Immunoinformatics Comes of Age

With the burgeoning immunological data in the scientific literature, scientists must increasingly rely on Internet resources to inform and enhance their work. Here we provide a brief overview of the adaptive immune response and summaries of immunoinformatics resources, emphasizing those with Web interfaces. These resources include searchable databases of epitopes and immune-related molecules, and analysis tools for T cell and B cell epitope prediction, vaccine design, and protein structure comparisons. There is an agreeable synergy between the growing collections in immune-related databases and the growing sophistication of analysis software; the databases provide the foundation for developing predictive computational tools, which in turn enable more rapid identification of immune responses to populate the databases. Collectively, these resources contribute to improved understanding of immune responses and escape, and evolution of pathogens under immune pressure. The public health implications are vast, including designing vaccines, understanding autoimmune diseases, and defining the correlates of immune protection.

[1]  J. Sidney,et al.  Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism , 1999, Immunogenetics.

[2]  P. Kloetzel,et al.  A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates. , 2000, Biophysical journal.

[3]  R. Siliciano,et al.  Characterization of a conserved T cell epitope in HIV-1 gp41 recognized by vaccine-induced human cytolytic T cells. , 1991, Journal of immunology.

[4]  Feng Gao,et al.  Diversity Considerations in HIV-1 Vaccine Selection , 2002, Science.

[5]  P. Kloetzel,et al.  Modeling the MHC class I pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class I binding , 2005, Cellular and Molecular Life Sciences CMLS.

[6]  R. Tampé,et al.  Function of the transport complex TAP in cellular immune recognition. , 1999, Biochimica et biophysica acta.

[7]  Andrew C. R. Martin,et al.  SACS-Self-maintaining database of antibody crystal structure information , 2002, Bioinform..

[8]  O. Lund,et al.  novel sequence representations Reliable prediction of T-cell epitopes using neural networks with , 2003 .

[9]  Yanli Wang,et al.  MMDB: Entrez's 3D-structure database , 2003, Nucleic Acids Res..

[10]  A Sette,et al.  Two complementary methods for predicting peptides binding major histocompatibility complex molecules. , 1997, Journal of molecular biology.

[11]  Irini A. Doytchinova,et al.  JenPep: A Novel Computational Information Resource for Immunobiology and Vaccinology , 2003, J. Chem. Inf. Comput. Sci..

[12]  Alessandro Sette,et al.  Selection, Transmission, and Reversion of an Antigen-Processing Cytotoxic T-Lymphocyte Escape Mutation in Human Immunodeficiency Virus Type 1 Infection , 2004, Journal of Virology.

[13]  Bjoern Peters,et al.  Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications , 2005, Immunogenetics.

[14]  H. Margalit,et al.  Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism. , 2000, Journal of molecular biology.

[15]  Bette T. Korber,et al.  Antigenicity and Immunogenicity of a Synthetic Human Immunodeficiency Virus Type 1 Group M Consensus Envelope Glycoprotein , 2005, Journal of Virology.

[16]  Sophie Palmer,et al.  Genetic Analysis of Completely Sequenced Disease-Associated MHC Haplotypes Identifies Shuffling of Segments in Recent Human History , 2006, PLoS genetics.

[17]  Kun Yu,et al.  Methods for Prediction of Peptide Binding to MHC Molecules: A Comparative Study , 2002, Molecular medicine.

[18]  O. Schueler‐Furman,et al.  Structure‐based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles , 2000, Protein science : a publication of the Protein Society.

[19]  A. McMichael,et al.  Development of a DNA-MVA/HIVA vaccine for Kenya. , 2002, Vaccine.

[20]  Robyn L Stanfield,et al.  How TCRs bind MHCs, peptides, and coreceptors. , 2006, Annual review of immunology.

[21]  Vladimir Brusic,et al.  MHCPEP, a database of MHC-binding peptides: update 1996 , 1997, Nucleic Acids Res..

[22]  D. Flower,et al.  Benchmarking B cell epitope prediction: Underperformance of existing methods , 2005, Protein science : a publication of the Protein Society.

[23]  Pingping Guan,et al.  MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. , 2003, Applied bioinformatics.

[24]  A Sette,et al.  A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. , 1997, Human immunology.

[25]  P. Cresswell,et al.  Mechanisms of MHC class I--restricted antigen processing. , 1998, Annual review of immunology.

[26]  Anne S De Groot,et al.  HIV vaccine development by computer assisted design: the GAIA vaccine. , 2005, Vaccine.

[27]  R. Hodges,et al.  New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. , 1986, Biochemistry.

[28]  D. Fremont,et al.  Functional Evidence That Conserved TCR CDRα3 Loop Docking Governs the Cross-Recognition of Closely Related Peptide:Class I Complexes1 , 2001, The Journal of Immunology.

[29]  Michael A. Gonzalez,et al.  From genome to vaccine: in silico predictions, ex vivo verification. , 2001, Vaccine.

[30]  Judy Lieberman,et al.  Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach. , 2003, Vaccine.

[31]  Hans-Georg Rammensee,et al.  MHC Ligands and Peptide Motifs , 1998, Molecular Biology Intelligence Unit.

[32]  Manoj Bhasin,et al.  Prediction of promiscuous and high-affinity mutated MHC binders. , 2003, Hybridoma and hybridomics.

[33]  O. Lund,et al.  Definition of supertypes for HLA molecules using clustering of specificity matrices , 2004, Immunogenetics.

[34]  P. Y. Chou,et al.  Prediction of the secondary structure of proteins from their amino acid sequence. , 2006 .

[35]  Philip J. R. Goulder,et al.  PeptGen: Designing Peptides for Immunological Studies and Application to HIV Consensus Sequences , 2000 .

[36]  P. Karplus,et al.  Prediction of chain flexibility in proteins , 1985, Naturwissenschaften.

[37]  Karina Yusim,et al.  Los Alamos Hepatitis C Immunology Database , 2005, Applied bioinformatics.

[38]  S Forbes,et al.  The MHC haplotype project: a resource for HLA-linked association studies. , 2002, Tissue antigens.

[39]  Peter Parham,et al.  The HLA FactsBook , 1999 .

[40]  Bette Korber,et al.  Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA , 2004, Nature.

[41]  Bjoern Peters,et al.  Identifying MHC Class I Epitopes by Predicting the TAP Transport Efficiency of Epitope Precursors , 2003, The Journal of Immunology.

[42]  Steve Wilson,et al.  The Immune Epitope Database and Analysis Resource: From Vision to Blueprint , 2005, PLoS biology.

[43]  E. Emini,et al.  Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide , 1985, Journal of virology.

[44]  R. Siliciano,et al.  An epitope-selective, transporter associated with antigen presentation (TAP)-1/2-independent pathway and a more general TAP-1/2-dependent antigen-processing pathway allow recognition of the HIV-1 envelope glycoprotein by CD8+ CTL. , 1995, Journal of Immunology.

[45]  Vladimir Brusic,et al.  MHCPEP, a database of MHC-binding peptides: update 1996 , 1997, Nucleic Acids Res..

[46]  S Buus,et al.  Description and prediction of peptide-MHC binding: the 'human MHC project'. , 1999, Current opinion in immunology.

[47]  James Theiler,et al.  Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants , 2007, Nature Medicine.

[48]  S Brunak,et al.  Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor-stratified calibrations. , 2001, Tissue antigens.

[49]  Vladimir Brusic,et al.  Computational methods for prediction of T-cell epitopes--a framework for modelling, testing, and applications. , 2004, Methods.

[50]  Søren Brunak,et al.  Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach , 2004, Bioinform..

[51]  Andrew C. R. Martin,et al.  Accessing the Kabat antibody sequence database by computer , 1996, Proteins.

[52]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[53]  Hans Hengartner,et al.  Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice , 1994, Nature.

[54]  P. Tongaonkar,et al.  A semi‐empirical method for prediction of antigenic determinants on protein antigens , 1990, FEBS letters.

[55]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[56]  S. Brunak,et al.  Prediction of proteasome cleavage motifs by neural networks. , 2002, Protein engineering.

[57]  H. Grey,et al.  Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Gajendra P. S. Raghava,et al.  ProPred1: Prediction of Promiscuous MHC Class-I Binding Sites , 2003, Bioinform..

[59]  D. Nickle,et al.  Human Immunodeficiency Virus Type 1 Subtype B Ancestral Envelope Protein Is Functional and Elicits Neutralizing Antibodies in Rabbits Similar to Those Elicited by a Circulating Subtype B Envelope , 2005, Journal of Virology.

[60]  A. Oxenius,et al.  Immediate Cytotoxicity But Not Degranulation Distinguishes Effector and Memory Subsets of CD8+ T Cells , 2004, The Journal of experimental medicine.

[61]  L. Eckmann Sensor molecules in intestinal innate immunity against bacterial infections , 2005, Current opinion in gastroenterology.

[62]  K Eichmann,et al.  The specificity of proteasomes: impact on MHC class I processing and presentation of antigens , 1999, Immunological reviews.

[63]  Jonathan W. Yewdell,et al.  Immune recognition of a human renal cancer antigen through post-translational protein splicing , 2004, Nature.

[64]  James Robinson,et al.  IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex , 2003, Nucleic Acids Res..

[65]  Soung Hie Kim,et al.  An Artificial Neural Network Approach , 1993 .

[66]  Manoj Bhasin,et al.  Analysis and prediction of affinity of TAP binding peptides using cascade SVM , 2004, Protein science : a publication of the Protein Society.

[67]  R. Corrêa-Oliveira,et al.  Identification of immunodominant epitopes of Schistosoma mansoni vaccine candidate antigens using human T cells. , 2004, Memorias do Instituto Oswaldo Cruz.

[68]  J. Skolnick,et al.  Application of an artificial neural network to predict specific class I MHC binding peptide sequences , 1998, Nature Biotechnology.

[69]  Christina Kuttler An Algorithm for the Prediction of Proteasomal Cleavages , 2000, German Conference on Bioinformatics.

[70]  V Brusic,et al.  Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. , 1998, Journal of immunology.

[71]  Gajendra P. S. Raghava,et al.  MHCBN: a comprehensive database of MHC binding and non-binding peptides , 2003, Bioinform..

[72]  A. Goldberg,et al.  Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. , 1999, Journal of immunology.

[73]  J. Berzofsky,et al.  The importance of pairwise interactions between peptide residues in the delineation of TCR specificity. , 1998, Journal of immunology.

[74]  A. Goldberg,et al.  Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[75]  John B. Anderson,et al.  MMDB: Entrez's 3D-structure database , 2002, Nucleic Acids Res..

[76]  Vladimir Brusic,et al.  Large‐scale computational identification of HIV T‐cell epitopes , 2002, Immunology and cell biology.

[77]  Marie-Paule Lefranc,et al.  IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunogenetics and immunoinformatics. , 2004, Molecular immunology.

[78]  Pingping Guan,et al.  MHCPred: a server for quantitative prediction of peptide-MHC binding , 2003, Nucleic Acids Res..

[79]  Andrew Brooks,et al.  Peptide binding to MHC class I molecules: Implications for antigenic peptide prediction , 1995, Immunologic research.

[80]  Alessandro Sette,et al.  Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method , 2005, BMC Bioinformatics.

[81]  O. Lund,et al.  The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage , 2005, Immunogenetics.

[82]  S. H. van der Burg,et al.  Identification of peptide sequences that potentially trigger HLA‐A2.1‐restricted cytotoxic T lymphocytes , 1993, European journal of immunology.

[83]  P. Kloetzel,et al.  A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20 S proteasome. , 1999, Journal of molecular biology.

[84]  Gajendra P. S. Raghava,et al.  Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences , 2005, Nucleic Acids Res..

[85]  S Brunak,et al.  Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. , 2003, Tissue antigens.

[86]  Gajendra P. S. Raghava,et al.  ProPred: prediction of HLA-DR binding sites , 2001, Bioinform..

[87]  Garrett M. Morris,et al.  Crystal Structure of a Neutralizing Human IgG Against HIV-1: A Template for Vaccine Design , 2001, Science.

[88]  P. A. Peterson,et al.  Emerging principles for the recognition of peptide antigens by MHC class I molecules. , 1992, Science.

[89]  P. Kloetzel,et al.  MAPPP: MHC class I antigenic peptide processing prediction. , 2003, Applied bioinformatics.

[90]  H. Sebastian Seung,et al.  Query by committee , 1992, COLT '92.

[91]  Gajendra P.S. Raghava,et al.  Prediction of CTL epitopes using QM, SVM and ANN techniques. , 2004, Vaccine.

[92]  Morten Nielsen,et al.  Web-based Tools for Vaccine Design , 2002 .

[93]  Peter Parham,et al.  Part 5 – HLA-F , 2000 .

[94]  Nicole Frahma,et al.  HIV Molecular Immunology 2005 , 2006 .

[95]  E Y Jones,et al.  MHC superfamily structure and the immune system. , 1999, Current opinion in structural biology.

[96]  M. Bhasin,et al.  Bcipep: A database of B-cell epitopes , 2005, BMC Genomics.