A scalable and implicit meshless RBF method for the 3D unsteady nonlinear Richards equation with single and multi‐zone domains

The Local Hermitian Interpolation (LHI) method is a strong‐form meshless numerical technique which uses Radial Basis Function (RBF) interpolants to satisfy linear and nonlinear governing equations and boundary operators. Recent developments have shown that, for linear transport problems, applying the PDE governing equation directly to the basis functions can greatly improve the accuracy and stability of the resulting solutions. In this work, the LHI formulation with local PDE‐interpolation is extended to the nonlinear gravity‐driven Richards equation, in order to solve unsteady problems involving flow in unsaturated porous media.

[1]  Yousef Saad,et al.  A benchmark package for sparse matrix computations , 1988, ICS '88.

[2]  Non‐linear heat conduction in composite bodies: A boundary element formulation , 1988 .

[3]  Leonard F. Konikow,et al.  Modeling Groundwater Flow and Pollution , 1988 .

[4]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[5]  T.-C. Jim Yeh,et al.  One‐dimensional steady state infiltration in heterogeneous soils , 1989 .

[6]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[7]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[8]  R. Białecki,et al.  SOLVING NONLINEAR STEADY-STATE POTENTIAL PROBLEMS IN INHOMOGENOUS BODIES USING THE BOUNDARY-ELEMENT METHOD , 1990 .

[9]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[10]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[11]  Rajesh Srivastava,et al.  Analytical solutions for one-dimensional, transient infiltration towards the water table in homogeneous and layered soils , 1991 .

[12]  R. Srivastava,et al.  Analytical solutions for one-dimensional, transient infiltration towards the water table in homogeneous and layered soils , 1991 .

[13]  Fractional integrals on spaces of homogeneous type , 1992 .

[14]  Zongmin Wu,et al.  Hermite-Birkhoff interpolation of scattered data by radial basis functions , 1992, Approximation Theory and its Applications.

[15]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[16]  R. Schaback Multivariate Interpolation and Approximation by Translates of a Basis Function the Space of Functions (1.1) Often , 1995 .

[17]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[18]  Ching-Shyang Chen,et al.  A numerical method for heat transfer problems using collocation and radial basis functions , 1998 .

[19]  Benny Y. C. Hon,et al.  An efficient numerical scheme for Burgers' equation , 1998, Appl. Math. Comput..

[20]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[21]  Kwok Fai Cheung,et al.  Multiquadric Solution for Shallow Water Equations , 1999 .

[22]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[23]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[24]  E. J. Kansa,et al.  Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme , 1999 .

[25]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[26]  Robert Schaback,et al.  On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..

[27]  Iuliu Sorin Pop Error Estimates for a Time Discretization Method for the Richards' Equation , 2001 .

[28]  H. Power,et al.  A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations , 2002 .

[29]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[30]  Brad Baxter Preconditioned conjugate gradients, radial basis functions, and Toeplitz matrices , 2002 .

[31]  Y. Hon,et al.  Overlapping domain decomposition method by radial basis functions , 2003 .

[32]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[33]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[34]  S. C. Fan,et al.  Local multiquadric approximation for solving boundary value problems , 2003 .

[35]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[36]  Thomas C. Cecil,et al.  Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .

[37]  R. Schaback,et al.  On Adaptive Unsymmetric Meshless Collocation , 2004 .

[38]  Leevan Ling,et al.  A least-squares preconditioner for radial basis functions collocation methods , 2005, Adv. Comput. Math..

[39]  A Meshless Approach Based upon Radial Basis Function Hermite Collocation Method for Predicting the Cooling and the Freezing Times of Foods , 2005 .

[40]  E. Kansa,et al.  On Approximate Cardinal Preconditioning Methods for Solving PDEs with Radial Basis Functions , 2005 .

[41]  F. T. Tracy,et al.  Clean two‐ and three‐dimensional analytical solutions of Richards' equation for testing numerical solvers , 2006 .

[42]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[43]  A. H. Rosales,et al.  Radial basis function Hermite collocation approach for the numerical simulation of the effect of precipitation inhibitor on the crystallization process of an over‐saturated solution , 2006 .

[44]  Isabelle Braud,et al.  Assessment of an efficient numerical solution of the 1D Richards' equation on bare soil , 2006 .

[45]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[46]  Robert Vertnik,et al.  Meshfree explicit local radial basis function collocation method for diffusion problems , 2006, Comput. Math. Appl..

[47]  B. Šarler,et al.  Solution of transient direct-chill aluminium billet casting problem with simultaneous material and interphase moving boundaries by a meshless method , 2006 .

[48]  F.T. Tracy Accuracy and Performance Testing of Three-Dimensional Unsaturated Flow Finite Element Groundwater Programs on the Cray XT3 Using Analytical Solutions , 2006, 2006 HPCMP Users Group Conference (HPCMP-UGC'06).

[49]  Robert Schaback,et al.  Convergence of Unsymmetric Kernel-Based Meshless Collocation Methods , 2007, SIAM J. Numer. Anal..

[50]  Alain J. Kassab,et al.  An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer , 2007 .

[51]  A. H. Rosales,et al.  Non-Overlapping Domain Decomposition Algorithm for the Hermite Radial Basis Function Meshless Collocation Approach: Applications to Convection Diffusion Problems , 2007 .

[52]  Yunxin Zhang Reconstruct multiscale functions using different RBFs in different subdomains , 2007, Appl. Math. Comput..

[53]  Henry Power,et al.  A double boundary collocation Hermitian approach for the solution of steady state convection-diffusion problems , 2008, Comput. Math. Appl..

[54]  E. Sudicky,et al.  A generalized transformation approach for simulating steady-state variably-saturated subsurface flow , 2008 .

[55]  David Stevens,et al.  The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems , 2009, J. Comput. Phys..

[56]  H. Power,et al.  An order-N complexity meshless algorithm for transport-type PDEs, based on local Hermitian interpolation , 2009 .

[57]  David Stevens The LHI Method: A Scalable Meshless Numerical Technique for the Solution of Transport Equations , 2009 .

[58]  H. Power,et al.  A Meshless Solution Technique for the Solution of 3D Unsaturated Zone Problems, Based on Local Hermitian Interpolation with Radial Basis Functions , 2009 .