Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap

We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, whilst a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5 % level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01 % level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large 2-D trap array.

[1]  K. Brown,et al.  Techniques for Microwave Near-Field Quantum Control of Trapped Ions , 2012, 1211.6554.

[2]  Y. Colombe,et al.  Individual-ion addressing with microwave field gradients. , 2012, Physical review letters.

[3]  M. House,et al.  Analytic model for electrostatic fields in surface-electrode ion traps , 2008 .

[4]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[5]  Isaac L. Chuang,et al.  Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap , 2008, 0811.2422.

[6]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[7]  A. R. Ellis,et al.  Integration of fluorescence collection optics with a microfabricated surface electrode ion trap , 2010, 1008.2977.

[8]  Y. Colombe,et al.  Efficient fiber optic detection of trapped ion fluorescence. , 2010, Physical review letters.

[9]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[10]  Curtis Volin,et al.  Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation , 2013, 1304.6636.

[11]  N. Timoney,et al.  Individual addressing of trapped ions and coupling of motional and spin states using RF radiation. , 2007, Physical review letters.

[12]  Debabani Choudhury,et al.  3D integration technologies for emerging microsystems , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[13]  J. Britton,et al.  Errors in trapped-ion quantum gates due to spontaneous photon scattering , 2006, quant-ph/0611048.

[14]  D. M. Lucas,et al.  Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap , 2011, 1105.4864.

[15]  D. M. Lucas,et al.  Scalable simultaneous multiqubit readout with 99.99% single-shot fidelity , 2009, 0906.3304.

[16]  R. B. Blakestad,et al.  Transport of trapped-ion qubits within a scalable quantum processor , 2010 .

[17]  D. M. Lucas,et al.  A microfabricated ion trap with integrated microwave circuitry , 2012, 1210.3272.

[18]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[19]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[20]  M. Johanning,et al.  A planar ion trap chip with integrated structures for an adjustable magnetic field gradient , 2013, Applied Physics B.

[21]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[22]  Curtis Volin,et al.  Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation , 2012, 1204.4147.

[23]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[24]  Isaac L. Chuang,et al.  Transparent ion trap with integrated photodetector , 2012, 1212.1443.

[25]  A. Steane,et al.  A long-lived memory qubit on a low-decoherence quantum bus , 2007, 0710.4421.

[26]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[27]  Janus H. Wesenberg,et al.  Electrostatics of surface-electrode ion traps , 2008, 0808.1623.

[28]  Daniel Lynn Stick,et al.  Fabrication and Characterization of Semiconductor Ion Traps for Quantum Information Processing. , 2007 .

[29]  Andreas Jechow,et al.  Imaging of trapped ions with a microfabricated optic for quantum information processing. , 2010, Physical review letters.

[30]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.