Künstliches Feedback für Oberschenkelamputierte – Theoretische Analyse / Artificial Feedback for Transfemoral Amputees – Theoretical Analysis

Zusammenfassung Dieser Beitrag untersucht auf Basis von Modellen der menschlichen Wahrnehmung den Einfluss künstlichen sensorischen Feedbacks auf posturale Kontrolle und Gangsymmetrie von Oberschenkelamputierten. In der Standphase wird ein vereinfachtes, statisches neuromechanisches Modell verwendet, in der Schwungphase ein Erweitertes Kalman- Filter, das dynamische Effekte berücksichtigt. Die Simulation lässt den Schluss zu, dass Rückmeldung des Fußdruckpunktes während der Standphase die Wahrnehmung verbessern könnte, künstliches Feedback während der Schwungphase jedoch nicht von Vorteil ist. Eine klinische Fallstudie wäre nötig, um die in der Simulation beobachteten Effekte sensorischen Feedbacks in der praktischen Anwendung mit Amputierten zu überprüfen. Summary Based on models of human perception, this paper investigates the influence of artificial sensory feedback on prosthetic gait. A simple static neuromechanic model of a transfemoral prosthesis and amputee perception reveals possible effects during stance phase. To analyze swing phase, an observer model of the prosthesis is implemented using an Extended Kalman Filter. While standing, feedback of the Center of Pressure may improve perception, whereas during gait amputees do probably not profit from additional information. A clinical case study would have to reveal whether the theoretical analysis correctly determines the effects of feedback on amputee locomotion.

[1]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[2]  J. Sabolich,et al.  Sense of Feel for Lower‐Limb Amputees: A Phase‐One Study , 1994 .

[3]  F. Farahmand,et al.  KINEMATIC AND DYNAMIC ANALYSIS OF THE GAIT CYCLE OF ABOVE-KNEE AMPUTEES , 2006 .

[4]  A. Maravita,et al.  Tools for the body (schema) , 2004, Trends in Cognitive Sciences.

[5]  H. Ross,et al.  Weber Fractions for Weight and Mass as a Function of Stimulus Intensity , 1987, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[6]  Mark Speechley,et al.  Balance confidence among people with lower-limb amputations. , 2002, Physical therapy.

[7]  J. Kulkarni,et al.  Falls in Patients with Lower Limb Amputations: Prevalence and Contributing Factors , 1996 .

[8]  Theo Mulder,et al.  Reorganisation of Postural Control Following Lower Limb Amputation: Theoretical Considerations and Implications for Rehabilitation , 1992 .

[9]  S. Morrison,et al.  Toe clearance variability during walking in young and elderly men. , 2008, Gait & posture.

[10]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[11]  A. Arieta,et al.  Study on the Effects of Electrical Stimulation on the Pattern Recognition for an EMG Prosthetic Application , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[12]  Carlo J. De Luca,et al.  The role of plantar cutaneous sensation in unperturbed stance , 2004, Experimental Brain Research.

[13]  W.J. Tompkins,et al.  Electrotactile and vibrotactile displays for sensory substitution systems , 1991, IEEE Transactions on Biomedical Engineering.

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  P. Convery,et al.  Ultrasound study of the motion of the residual femur within a transfemoral socket during gait , 2000, Prosthetics and orthotics international.

[16]  P. Bach-y-Rita,et al.  Sensory substitution and the human–machine interface , 2003, Trends in Cognitive Sciences.

[17]  Markos Papageorgiou,et al.  Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung , 2012 .

[18]  P M Quesada,et al.  Lower-limb proprioception in above-knee amputees. , 1992, Clinical orthopaedics and related research.

[19]  V. C. Roberts,et al.  Frictional action at lower limb/prosthetic socket interface. , 1996, Medical engineering & physics.