暂无分享,去创建一个
[1] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[2] Christian Kreuzer,et al. Corrigendum to "Convergence of adaptive, discontinuous Galerkin methods" , 2021, Math. Comput..
[3] M. Foss,et al. The Lavrentiev Gap Phenomenon in Nonlinear Elasticity , 2003 .
[4] Christoph Ortner,et al. On the Convergence of Adaptive Nonconforming Finite Element Methods for a Class of Convex Variational Problems , 2011, SIAM J. Numer. Anal..
[5] Christoph Ortner,et al. Nonconforming finite-element discretization of convex variational problems , 2011 .
[6] Carsten Carstensen,et al. A convergent adaptive finite element method for an optimal design problem , 2007, Numerische Mathematik.
[7] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[8] Carsten Carstensen,et al. Numerical solution of the scalar double-well problem allowing microstructure , 1997, Math. Comput..
[9] Carsten Carstensen,et al. How to prove the discrete reliability for nonconforming finite element methods. , 2018, 1808.03535.
[10] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[11] Jérôme Droniou,et al. A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..
[12] Alexandre Ern,et al. Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..
[13] Ruben Specogna,et al. An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics , 2016, J. Comput. Phys..
[14] R. Hoppe,et al. A review of unified a posteriori finite element error control , 2012 .
[15] Ricardo H. Nochetto,et al. Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..
[16] Carsten Carstensen,et al. Convergence of adaptive finite element methods for a nonconvex double-well minimization problem , 2015, Math. Comput..
[17] Ricardo H. Nochetto,et al. Primer of Adaptive Finite Element Methods , 2011 .
[18] Carsten Carstensen,et al. Analysis of a Class of Penalty Methods for Computing Singular Minimizers , 2010, Comput. Methods Appl. Math..
[19] Carsten Carstensen,et al. Nonconforming FEMs for an Optimal Design Problem , 2015, SIAM J. Numer. Anal..
[20] Christian Kreuzer,et al. Optimality of an adaptive finite element method for the p-Laplacian equation , 2012 .
[21] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[22] Michel Chipot,et al. Numerical approximations in variational problems with potential wells , 1992 .
[23] Antje Baer,et al. Direct Methods In The Calculus Of Variations , 2016 .
[24] W. Gibbs,et al. Finite element methods , 2017, Graduate Studies in Mathematics.
[25] A. Ern,et al. A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..
[26] A. Ern,et al. A quasi-optimal variant of the hybrid high-order method for elliptic partial differential equations with H−1 loads , 2020 .
[27] Alexandre Ern,et al. Hybrid High-Order methods for finite deformations of hyperelastic materials , 2017, ArXiv.
[28] Carsten Carstensen,et al. A Posteriori Finite Element Error Control for the P-Laplace Problem , 2003, SIAM J. Sci. Comput..
[29] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[30] Andreas Veeser,et al. Quasi-Optimal Nonconforming Methods for Symmetric Elliptic Problems. II - Overconsistency and Classical Nonconforming Elements , 2017, SIAM J. Numer. Anal..
[31] Christian Kreuzer,et al. Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..
[32] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[33] Jérôme Droniou,et al. The Hybrid High-Order Method for Polytopal Meshes , 2020 .
[34] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[35] M. Lavrentieff,et al. Sur quelques problèmes du calcul des variations , 1927 .
[36] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[37] Carsten Carstensen,et al. Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.
[38] Alexandre Ern,et al. An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..
[39] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[40] Carsten Carstensen,et al. Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems , 2014, Math. Comput..
[41] Carsten Carstensen,et al. An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity , 2012, SIAM J. Numer. Anal..
[42] C. Carstensen,et al. A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides , 2021, Comput. Methods Appl. Math..
[43] Daniele Boffi,et al. Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form , 2015, Math. Comput..
[44] Carsten Carstensen,et al. Adaptive Finite Element Methods for Microstructures? Numerical Experiments for a 2-Well Benchmark , 2003, Computing.
[45] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[46] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[47] Christoph Ortner,et al. Crouzeix-Raviart finite element method for non-autonomous variational problems with Lavrentiev gap , 2021, Numerische Mathematik.
[48] C. Carstensen,et al. Unstabilized Hybrid High-Order method for a class of degenerate convex minimization problems , 2020, SIAM J. Numer. Anal..
[49] A. Buffa,et al. Compact embeddings of broken Sobolev spaces and applications , 2009 .
[50] Carsten Carstensen,et al. Convergence of adaptive FEM for a class of degenerate convex minimization problems , 2007 .
[51] D. P. Flemming. Numerical Integration over Simplexes and Cones , 2010 .
[52] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[53] Carsten Carstensen,et al. Axioms of Adaptivity with Separate Marking for Data Resolution , 2017, SIAM J. Numer. Anal..
[54] Carsten Carstensen,et al. Axioms of adaptivity , 2013, Comput. Math. Appl..
[55] Carsten Carstensen,et al. Mixed Finite Element Method for a Degenerate Convex Variational Problem from Topology Optimization , 2012, SIAM J. Numer. Anal..