A space–time variational approach to hydrodynamic stability theory

We present a hydrodynamic stability theory for incompressible viscous fluid flows based on a space–time variational formulation and associated generalized singular value decomposition of the (linearized) Navier–Stokes equations. We first introduce a linear framework applicable to a wide variety of stationary- or time-dependent base flows: we consider arbitrary disturbances in both the initial condition and the dynamics measured in a ‘data’ space–time norm; the theory provides a rigorous, sharp (realizable) and efficiently computed bound for the velocity perturbation measured in a ‘solution’ space–time norm. We next present a generalization of the linear framework in which the disturbances and perturbation are now measured in respective selected space–time semi-norms; the semi-norm theory permits rigorous and sharp quantification of, for example, the growth of initial disturbances or functional outputs. We then develop a (Brezzi–Rappaz–Raviart) nonlinear theory which provides, for disturbances which satisfy a certain (rather stringent) amplitude condition, rigorous finite-amplitude bounds for the velocity and output perturbations. Finally, we demonstrate the application of our linear and nonlinear hydrodynamic stability theory to unsteady moderate Reynolds number flow in an eddy-promoter channel.

[1]  Masayuki Yano,et al.  A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations , 2014, SIAM J. Sci. Comput..

[2]  Anthony T. Patera,et al.  A SPACE-TIME CERTIFIED REDUCED BASIS METHOD FOR BURGERS' EQUATION , 2014 .

[3]  Karsten Urban,et al.  An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..

[4]  Qiqi Wang,et al.  Forward and adjoint sensitivity computation of chaotic dynamical systems , 2012, J. Comput. Phys..

[5]  C. P. Caulfield,et al.  Variational framework for flow optimization using seminorm constraints. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[7]  Ulrich Parlitz,et al.  Theory and Computation of Covariant Lyapunov Vectors , 2011, Journal of Nonlinear Science.

[8]  Rob Stevenson,et al.  Space-time variational saddle point formulations of Stokes and Navier-Stokes equations , 2014 .

[9]  Alessandro Bottaro,et al.  Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. , 2011, Physical review letters.

[10]  R. Kerswell,et al.  Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. , 2010, Physical review letters.

[11]  S. Camarri,et al.  Structural sensitivity of the secondary instability in the wake of a circular cylinder , 2010, Journal of Fluid Mechanics.

[12]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[13]  Spencer J. Sherwin,et al.  Transient growth analysis of the flow past a circular cylinder , 2009 .

[14]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[15]  S. Sherwin,et al.  Direct optimal growth analysis for timesteppers , 2008 .

[16]  Simone Deparis,et al.  Reduced Basis Error Bound Computation of Parameter-Dependent Navier-Stokes Equations by the Natural Norm Approach , 2008, SIAM J. Numer. Anal..

[17]  P. Schmid Nonmodal Stability Theory , 2007 .

[18]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[19]  W. H. Reid,et al.  Hydrodynamic Stability: Contents , 2004 .

[20]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[21]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[22]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[23]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[24]  P. Schmid,et al.  Transient and asymptotic stability of granular shear flow , 1994, Journal of Fluid Mechanics.

[25]  P. Ioannou,et al.  Stochastic forcing of the linearized Navier–Stokes equations , 1993 .

[26]  Roberto Buizza,et al.  Computation of optimal unstable structures for a numerical weather prediction model , 1993 .

[27]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[28]  S. C. Reddy,et al.  Energy growth in viscous channel flows , 1993, Journal of Fluid Mechanics.

[29]  Kathryn M. Butler,et al.  Three‐dimensional optimal perturbations in viscous shear flow , 1992 .

[30]  Schatz,et al.  Supercritical transition in plane channel flow with spatially periodic perturbations. , 1991, Physical review letters.

[31]  Orr,et al.  Identification of new nuclei near the proton-drip line for 31 <= Z <= 38. , 1991, Physical review letters.

[32]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .

[33]  B. Mikic,et al.  Minimum-dissipation transport enhancement by flow destabilization: Reynolds’ analogy revisited , 1988, Journal of Fluid Mechanics.

[34]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[35]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[36]  D. Joseph,et al.  Stability of fluid motions. I, II , 1976 .

[37]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[38]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[39]  N. S. Barnett,et al.  Private communication , 1969 .

[40]  E. Lorenz A study of the predictability of a 28-variable atmospheric model , 1965 .

[41]  Jindřich Nečas,et al.  Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .

[42]  Thomas Brooke Benjamin,et al.  The stability of the plane free surface of a liquid in vertical periodic motion , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  R. Vautard,et al.  A GUIDE TO LIAPUNOV VECTORS , 2022 .