Systemic pro-inflammatory cytokine status following therapeutic hypothermia in a piglet hypoxia-ischemia model

[1]  S. Grignon,et al.  Neuroprotective effects of hypothermia in inflammatory-sensitized hypoxic-ischemic encephalopathy , 2016, International Journal of Developmental Neuroscience.

[2]  L. D. de Vries,et al.  MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia , 2016, Archives of Disease in Childhood: Fetal and Neonatal Edition.

[3]  J. Martínez-Orgado,et al.  Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia , 2016, Front. Neurosci..

[4]  Yong Gu,et al.  Hypothermia followed by rapid rewarming exacerbates ischemia-induced brain injury and augments inflammatory response in rats. , 2016, Biochemical and biophysical research communications.

[5]  Xavier Golay,et al.  Brain Cell Death Is Reduced With Cooling by 3.5°C to 5°C but Increased With Cooling by 8.5°C in a Piglet Asphyxia Model , 2015, Stroke.

[6]  Peter Andriessen,et al.  Mesenchymal Stem Cells Induce T-Cell Tolerance and Protect the Preterm Brain after Global Hypoxia-Ischemia , 2013, PloS one.

[7]  L. McCullough,et al.  Inflammatory responses in hypoxic ischemic encephalopathy , 2013, Acta Pharmacologica Sinica.

[8]  W. T. Bass,et al.  Serum cytokines in a clinical trial of hypothermia for neonatal hypoxic-ischemic encephalopathy , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  A. Gunn,et al.  Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? , 2012, The Journal of pediatrics.

[10]  A. Gunn,et al.  Mechanisms of hypothermic neuroprotection. , 2014, Clinics in perinatology.

[11]  Nicola J. Robertson,et al.  Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis , 2010, Pediatrics.

[12]  M. Gurka,et al.  Hypothermia increases interleukin-6 and interleukin-10 in juvenile endotoxemic mice* , 2010, Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.

[13]  N. Marlow,et al.  Moderate hypothermia to treat perinatal asphyxial encephalopathy. , 2009, The New England journal of medicine.

[14]  T. Matsui,et al.  IL-10 production is reduced by hypothermia but augmented by hyperthermia in rat microglia. , 2008, Journal of neurotrauma.

[15]  S. Wisniewski,et al.  Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. , 2007, Journal of neurotrauma.

[16]  N J Robertson,et al.  Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. , 2006, AJNR. American journal of neuroradiology.

[17]  B. Marchetti,et al.  Inflammatory biomarkers in blood of patients with acute brain ischemia , 2006, European journal of neurology.

[18]  H. Aly,et al.  IL-1β, IL-6 and TNF-α and outcomes of neonatal hypoxic ischemic encephalopathy , 2006, Brain and Development.

[19]  Y. Ganor,et al.  Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFα or both , 2005, Journal of Neuroimmunology.

[20]  D. Krikovszky,et al.  Association between interleukin-6 polymorphism and age-at-onset of type 1 diabetes. Epistatic influences of the tumor necrosis factor-alpha and interleukin-1beta polymorphisms. , 2005, European cytokine network.

[21]  William Oh,et al.  Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. , 2005, The New England journal of medicine.

[22]  H. Okano,et al.  Blockade of interleukin‐6 signaling aggravates ischemic cerebral damage in mice: possible involvement of Stat3 activation in the protection of neurons , 2005, Journal of neurochemistry.

[23]  Steven P. Miller,et al.  Neonatal Encephalopathy: Association of Cytokines with MR Spectroscopy and Outcome , 2004, Pediatric Research.

[24]  C. McKerlie,et al.  High tidal volume ventilation causes different inflammatory responses in newborn versus adult lung. , 2004, American journal of respiratory and critical care medicine.

[25]  R. C. Silveira,et al.  Interleukin-6 and tumor necrosis factor-alpha levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic-ischemic encephalopathy. , 2003, The Journal of pediatrics.

[26]  J. Hallenbeck,et al.  Overexpression of Monocyte Chemoattractant Protein 1 in the Brain Exacerbates Ischemic Brain Injury and is Associated with Recruitment of Inflammatory Cells , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  S. Sakurada,et al.  Moderate hypothermia delays proinflammatory cytokine production of human peripheral blood mononuclear cells* , 2002, Critical care medicine.

[28]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[29]  D. Ferriero,et al.  Human Perinatal Asphyxia: Correlation of Neonatal Cytokines with MRI and Outcome , 2001, Developmental Neuroscience.

[30]  F. Cowan,et al.  Cerebral Intracellular Lactic Alkalosis Persisting Months after Neonatal Encephalopathy Measured by Magnetic Resonance Spectroscopy , 1999, Pediatric Research.

[31]  O. Saka,et al.  Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-α and interleukin-1β concentrations on outcome of full term infants with hypoxic–ischaemic encephalopathy , 1998, Archives of disease in childhood. Fetal and neonatal edition.

[32]  M. Blennow,et al.  Cytokine Response in Cerebrospinal Fluid after Birth Asphyxia , 1998, Pediatric Research.

[33]  D. Gruol,et al.  Physiological and pathological roles of interleukin-6 in the central nervous system , 1997, Molecular Neurobiology.

[34]  Vanhamme,et al.  Improved method for accurate and efficient quantification of MRS data with use of prior knowledge , 1997, Journal of magnetic resonance.

[35]  A. Edwards,et al.  Proton Magnetic Resonance Spectroscopy of the Brain during Acute Hypoxia-Ischemia and Delayed Cerebral Energy Failure in the Newborn Piglet , 1997, Pediatric Research.

[36]  A. Edwards,et al.  Mild Hypothermia after Severe Transient Hypoxia-Ischemia Ameliorates Delayed Cerebral Energy Failure in the Newborn Piglet , 1995, Pediatric Research.

[37]  T. Ohtsuki,et al.  Hypoxia/reoxygenation-mediated induction of astrocyte interleukin 6: a paracrine mechanism potentially enhancing neuron survival , 1994, The Journal of experimental medicine.

[38]  Marzena Wylezinska,et al.  Delayed (“Secondary”) Cerebral Energy Failure after Acute Hypoxia-Ischemia in the Newborn Piglet: Continuous 48-Hour Studies by Phosphorus Magnetic Resonance Spectroscopy , 1994, Pediatric Research.

[39]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[40]  Xavier Golay,et al.  Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. , 2013, Brain : a journal of neurology.

[41]  M. Post,et al.  Inflammatory response to oxygen and endotoxin in newborn rat lung ventilated with low tidal volume. , 2010, Pediatric research.

[42]  H. Aly,et al.  IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. , 2006, Brain & development.

[43]  W. T. Bass,et al.  Moderate hypothermia in neonatal encephalopathy: safety outcomes. , 2005, Pediatric neurology.

[44]  Carol L Wagner,et al.  Moderate hypothermia in neonatal encephalopathy: efficacy outcomes. , 2005, Pediatric neurology.