Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure

[1]  Jin Yu,et al.  Bandgap modulation of partially chlorinated graphene (C4Cl) nanosheets via biaxial strain and external electric field: a computational study , 2018, Applied Physics A.

[2]  Jin Yu,et al.  Tuning electronic properties of silicane layers by tensile strain and external electric field: A first-principles study , 2018 .

[3]  Minglei Sun,et al.  Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. , 2017, Physical chemistry chemical physics : PCCP.

[4]  Minglei Sun,et al.  Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN , 2017 .

[5]  E. Aktürk,et al.  Point defects in hexagonal germanium carbide monolayer: A first-principles calculation , 2016 .

[6]  Biao Liu,et al.  Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain. , 2016, Physical chemistry chemical physics : PCCP.

[7]  Y. Hao,et al.  Tunable schottky barrier in blue phosphorus–graphene heterojunction with normal strain , 2016 .

[8]  Zheng-tang Liu,et al.  Tunable electronic and optical behaviors of two-dimensional germanium carbide , 2016 .

[9]  Yu Jia,et al.  Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures , 2015 .

[10]  Mingwen Zhao,et al.  Strain-driven band inversion and topological aspects in Antimonene , 2015, Scientific Reports.

[11]  Yanli Wang,et al.  The electronic structures of group-V-group-IV hetero-bilayer structures: a first-principles study. , 2015, Physical chemistry chemical physics : PCCP.

[12]  J. Wang,et al.  Valley precession in graphene superlattices , 2015 .

[13]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[14]  Gang Zhang,et al.  Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures , 2015, 1505.07545.

[15]  Wei Hu,et al.  Tunable Schottky contacts in hybrid graphene–phosphorene nanocomposites , 2014, 1411.1781.

[16]  E. Aktürk,et al.  A first-principles study of n-type and p-type doping of germanium carbide sheet , 2015 .

[17]  Takashi Taniguchi,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS Nano.

[18]  Xiluan Wang,et al.  Flexible graphene devices related to energy conversion and storage , 2015 .

[19]  A. Fazzio,et al.  Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. , 2015, Physical review letters.

[20]  Wei Hu,et al.  Electronic Structures of Hybrid Graphene/Phosphorene Nanocomposite , 2014, 1411.1781.

[21]  M. Terrones,et al.  Large‐Area Si‐Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing , 2014, Advanced materials.

[22]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[23]  K. S. Chan,et al.  Multiple topological interface states in silicene , 2014 .

[24]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[25]  R. T. Tung The physics and chemistry of the Schottky barrier height , 2014 .

[26]  G. Shi,et al.  Graphene-based gas sensors , 2013 .

[27]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[28]  P. N. Samanta,et al.  Adsorption sensitivity of zigzag GeC nanotube towards N2, CO, SO2, HCN, NH3, and H2CO molecules , 2013 .

[29]  Chunhai Fan,et al.  Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. , 2013, Journal of the American Chemical Society.

[30]  K. Novoselov,et al.  Doping mechanisms in graphene-MoS2 hybrids , 2013, 1304.2236.

[31]  G. Shi,et al.  Graphene Materials for Electrochemical Capacitors. , 2013, The journal of physical chemistry letters.

[32]  P. N. Samanta,et al.  Chirality Dependence of Electron Transport Properties of Single-Walled GeC Nanotubes , 2013 .

[33]  A. A. Peyghan,et al.  First-principles calculations of structural stability, electronic, and electrical responses of GeC nanotube under electric field effect for use in nanoelectronic devices , 2012 .

[34]  C. Berger,et al.  A wide-bandgap metal–semiconductor–metal nanostructure made entirely from graphene , 2012, Nature Physics.

[35]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[36]  Linze Li,et al.  Tuning Electronic Structure of Bilayer MoS2 by Vertical Electric Field: A First-Principles Investigation , 2012 .

[37]  G. Shi,et al.  Graphene based catalysts , 2012 .

[38]  G. Shi,et al.  Graphene Hydrogels Deposited in Nickel Foams for High‐Rate Electrochemical Capacitors , 2012, Advanced materials.

[39]  K. Shepard,et al.  Graphene based heterostructures , 2012 .

[40]  Jian-min Zhang,et al.  Electronic and magnetic properties of single-wall GeC nanotubes filled with iron nanowires , 2012 .

[41]  Jin-Cheng Zheng,et al.  Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study , 2012 .

[42]  Zongxian Yang,et al.  Trapping of metal atoms in the defects on graphene. , 2011, The Journal of chemical physics.

[43]  O. Hod Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why? , 2011, Journal of chemical theory and computation.

[44]  Ying Dai,et al.  Magnetic properties of the semifluorinated and semihydrogenated 2D sheets of group-IV and III-V binary compounds , 2011 .

[45]  Chun Xing Li,et al.  A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. , 2011, Chemical communications.

[46]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[47]  X. Tang,et al.  First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds , 2011 .

[48]  Jean-Christophe Charlier,et al.  Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications , 2010 .

[49]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[50]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[51]  Zhongfang Chen,et al.  CO Catalytic Oxidation on Iron-Embedded Graphene: Computational Quest for Low-Cost Nanocatalysts , 2010 .

[52]  Hasan Sahin,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[53]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[54]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[55]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[57]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[58]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[59]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[60]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[61]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[62]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[63]  H. Kageshima First-principles calculation I , 2006 .

[64]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[65]  J. Seiber Status and Prospects , 2005 .

[66]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[67]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[68]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[69]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[70]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[71]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[72]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[73]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[74]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[75]  Pol Torres Alvarez,et al.  First Principles Calculations , 2018 .

[76]  D. J. Henry,et al.  Stability and electronic structures of double-walled armchair germanium carbide nanotubes , 2016 .

[77]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[78]  Aron Walsh,et al.  A first-principles investigation , 2011 .

[79]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[80]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .