An Accelerated-Limit-Crossing-Based Multilevel Algorithm for the $p$-Median Problem

In this paper, we investigate how to design an efficient heuristic algorithm under the guideline of the backbone and the fat, in the context of the p-median problem. Given a problem instance, the backbone variables are defined as the variables shared by all optimal solutions, and the fat variables are defined as the variables that are absent from every optimal solution. Identification of the backbone (fat) variables is essential for the heuristic algorithms exploiting such structures. Since the existing exact identification method, i.e., limit crossing (LC), is time consuming and sensitive to the upper bounds, it is hard to incorporate LC into heuristic algorithm design. In this paper, we develop the accelerated-LC (ALC)-based multilevel algorithm (ALCMA). In contrast to LC which repeatedly runs the time-consuming Lagrangian relaxation (LR) procedure, ALC is introduced in ALCMA such that LR is performed only once, and every backbone (fat) variable can be determined in O(1) time. Meanwhile, the upper bound sensitivity is eliminated by a dynamic pseudo upper bound mechanism. By combining ALC with the pseudo upper bound, ALCMA can efficiently find high-quality solutions within a series of reduced search spaces. Extensive empirical results demonstrate that ALCMA outperforms existing heuristic algorithms in terms of the average solution quality.

[1]  Toby Walsh,et al.  Backbones and Backdoors in Satisfiability , 2005, AAAI.

[2]  Johannes Schneider,et al.  Searching for Backbones--a high-performance parallel algorithm for solving combinatorial optimization problems , 2003, Future Gener. Comput. Syst..

[3]  Mauricio G. C. Resende,et al.  A Hybrid Heuristic for the p-Median Problem , 2004, J. Heuristics.

[4]  Byung Ro Moon,et al.  Normalization for Genetic Algorithms With Nonsynonymously Redundant Encodings , 2008, IEEE Transactions on Evolutionary Computation.

[5]  J. M. Singer,et al.  Searching for backbones — an efficient parallel algorithm for the traveling salesman problem , 1996 .

[6]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[7]  Weixiong Zhang,et al.  Configuration landscape analysis and backbone guided local search: Part I: Satisfiability and maximum satisfiability , 2004, Artif. Intell..

[8]  P. Stadler Landscapes and their correlation functions , 1996 .

[9]  M. John Hodgson,et al.  Heuristic concentration for the p-median: an example demonstrating how and why it works , 2002, Comput. Oper. Res..

[10]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[11]  Mark S. Daskin,et al.  Location of Health Care Facilities , 2005 .

[12]  Charles S. Revelle,et al.  A gamma heuristic for the p-median problem , 1999, Eur. J. Oper. Res..

[13]  Richard L. Church,et al.  Applying simulated annealing to location-planning models , 1996, J. Heuristics.

[14]  Maria E. Orlowska,et al.  On the Optimal Robot Routing Problem in Wireless Sensor Networks , 2007, IEEE Transactions on Knowledge and Data Engineering.

[15]  Andrew J. Parkes,et al.  Clustering at the Phase Transition , 1997, AAAI/IAAI.

[16]  C. Revelle,et al.  Heuristic concentration: Two stage solution construction , 1997 .

[17]  Weixiong Zhang,et al.  A Novel Local Search Algorithm for the Traveling Salesman Problem that Exploits Backbones , 2005, IJCAI.

[18]  Adam Prügel-Bennett,et al.  Learning the Large-Scale Structure of the MAX-SAT Landscape Using Populations , 2010, IEEE Transactions on Evolutionary Computation.

[19]  Ioannis T. Christou,et al.  Coordination of Cluster Ensembles via Exact Methods , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Xiuzhen Cheng,et al.  Localized Outlying and Boundary Data Detection in Sensor Networks , 2007 .

[21]  J. Reese,et al.  Solution methods for the p‐median problem: An annotated bibliography , 2006, Networks.

[22]  Wayne J. Pullan,et al.  A population based hybrid metaheuristic for the p-median problem , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[23]  Polly Bart,et al.  Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..

[24]  Alexandre Linhares,et al.  Synthesizing a predatory search strategy for VLSI layouts , 1999, IEEE Trans. Evol. Comput..

[25]  J. Current,et al.  An efficient tabu search procedure for the p-Median Problem , 1997 .

[26]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[27]  J. Reese,et al.  Solution methods for the p-median problem: An annotated bibliography , 2006 .

[28]  Yelena Yesha,et al.  Optimal Allocation for Partially Replicated Database Systems on Ring Networks , 1992, IEEE Trans. Knowl. Data Eng..

[29]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[30]  Konstantinos Kalpakis,et al.  Optimal Placement of Replicas in Trees with Read, Write, and Storage Costs , 2001, IEEE Trans. Parallel Distributed Syst..

[31]  Pierre Hansen,et al.  The p-median problem: A survey of metaheuristic approaches , 2005, Eur. J. Oper. Res..

[33]  Matteo Gaeta,et al.  Sensor Deployment for Network-Like Environments , 2010, IEEE Transactions on Automatic Control.

[34]  P. Hansen,et al.  Variable neighborhood search for the p-median , 1997 .

[35]  Weixiong Zhang,et al.  Searching for backbones and fat: a limit-crossing approach with applications , 2002, AAAI/IAAI.

[36]  Murat Yuksel,et al.  Large-Scale Network Parameter Configuration Using an On-Line Simulation Framework , 2008, IEEE/ACM Transactions on Networking.

[37]  Y. Kochetov,et al.  LARGE NEIGHBORHOOD LOCAL SEARCH FOR THE P-MEDIAN PROBLEM , 2005 .

[38]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[39]  Paul D. Seymour,et al.  Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..

[40]  Kenneth D. Boese,et al.  Cost Versus Distance In the Traveling Salesman Problem , 1995 .

[41]  M. Goodchild,et al.  Discrete space location-allocation solutions from genetic algorithms , 1986 .

[42]  Belén Melián-Batista,et al.  Parallelization of the scatter search for the p-median problem , 2003, Parallel Comput..

[43]  Belén Melián-Batista,et al.  The Parallel Variable Neighborhood Search for the p-Median Problem , 2002, J. Heuristics.

[44]  Toby Walsh,et al.  The Backbone of the Travelling Salesperson , 2005, IJCAI.

[45]  Pierre Hansen,et al.  Variable Neighborhood Decomposition Search , 1998, J. Heuristics.

[46]  R. A. Whitaker,et al.  A Fast Algorithm For The Greedy Interchange For Large-Scale Clustering And Median Location Problems , 1983 .

[47]  Marcus Gallagher,et al.  A general-purpose tunable landscape generator , 2006, IEEE Transactions on Evolutionary Computation.

[48]  Ernesto Costa,et al.  Multidimensional Knapsack Problem: A Fitness Landscape Analysis , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[49]  Mingchu Li,et al.  Backbone analysis and algorithm design for the quadratic assignment problem , 2008, Science in China Series F: Information Sciences.

[50]  Luiz Antonio Nogueira Lorena,et al.  Lagrangean/Surrogate Heuristics for p-Median Problems , 2000 .

[51]  G. Nemhauser,et al.  Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms , 1977 .

[52]  J. Current,et al.  Heuristic concentration and Tabu search: A head to head comparison , 1998 .

[53]  Alan V. Sahakian,et al.  Design of a Large Network for Radiological Image Data , 2007, IEEE Transactions on Information Technology in Biomedicine.

[54]  J. Beasley A note on solving large p-median problems , 1985 .

[55]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .