A Bumble Bees Mating Optimization Algorithm for Global Unconstrained Optimization Problems

A new nature inspired algorithm, that simulates the mating behavior of the bumble bees, the Bumble Bees Mating Optimization (BBMO) algorithm, is presented in this paper for solving global unconstrained optimization problems. The performance of the algorithm is compared with other popular metaheuristic and nature inspired methods when applied to the most classic global unconstrained optimization problems. The methods used for comparisons are Genetic Algorithms, Island Genetic Algorithms, Differential Evolution, Particle Swarm Optimization, and the Honey Bees Mating Optimization algorithm. A high performance of the proposed algorithm is achieved based on the results obtained.

[1]  H A Abbass,et al.  MARRIAGE IN HONEY-BEE OPTIMIZATION (MBO): A HAPLOMETROSIS POLYGYNOUS SWARMING APPROACH , 2001 .

[2]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[3]  Omid Bozorg Haddad,et al.  Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization , 2006 .

[4]  Magdalene Marinaki,et al.  Honey Bees Mating Optimization algorithm for financial classification problems , 2010, Appl. Soft Comput..

[5]  Hussein A. Abbass,et al.  A True Annealing Approach to the Marriage in Honey-Bees Optimization Algorithm , 2003, Int. J. Comput. Intell. Appl..

[6]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[7]  Alberto Prieto,et al.  Computational intelligence and bioinspired systems , 2007, Neurocomputing.

[8]  Magdalene Marinaki,et al.  A hybrid Honey Bees Mating Optimization algorithm for the Probabilistic Traveling Salesman Problem , 2009, 2009 IEEE Congress on Evolutionary Computation.

[9]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[10]  José R. Álvarez,et al.  Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach: First International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2005, Las Palmas, Canary Islands, Spain, June 15-18, 2005, Proceedings, Part II , 2005, IWINAC.

[11]  Hussein A. Abbass,et al.  A Monogenous MBO Approach to Satisfiability , 2001 .

[12]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[13]  Georgios Dounias,et al.  Honey Bees Mating Optimization algorithm for large scale vehicle routing problems , 2010, Natural Computing.

[14]  Ali Maroosi,et al.  Application of honey-bee mating optimization algorithm on clustering , 2007, Appl. Math. Comput..

[15]  Magdalene Marinaki,et al.  A Hybrid Clustering Algorithm Based on Honey Bees Mating Optimization and Greedy Randomized Adaptive Search Procedure , 2008, LION.

[16]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[17]  Habiba Drias,et al.  Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem , 2005, IWANN.

[18]  Andrzej Jaszkiewicz,et al.  Advanced OR and AI methods in transportation , 2009, Eur. J. Oper. Res..

[19]  Giuseppe Nicosia,et al.  Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) (Studies in Computational Intelligence) (Studies in Computational Intelligence) XXXX , 2008 .

[20]  Manoj Kumar Tiwari,et al.  Swarm Intelligence, Focus on Ant and Particle Swarm Optimization , 2007 .

[21]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence , 2008 .

[22]  Lale Özbakır,et al.  Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem , 2007 .

[23]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[24]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[25]  Xin-She Yang,et al.  Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms , 2005, IWINAC.

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[27]  Georgios Dounias,et al.  Honey Bees Mating Optimization Algorithm for the Vehicle Routing Problem , 2007, NICSO.

[28]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[29]  Yue Zhang,et al.  BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior , 2004, ANTS Workshop.

[30]  Y. Marinakis,et al.  Honey Bees Mating Optimization for the location routing problem , 2008, 2008 IEEE International Engineering Management Conference.

[31]  Barry J. Adams,et al.  Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation , 2007, J. Frankl. Inst..

[32]  Magdalene Marinaki,et al.  A Hybrid Bumble Bees Mating Optimization - GRASP Algorithm for Clustering , 2009, HAIS.