EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python

The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials.

[1]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[3]  James F. Kaiser,et al.  The use of a masking signal to improve empirical mode decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[4]  N. Huang,et al.  On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..