First-Order Rule Mining by Using Graphs Created from Temporal Medical Data

In managing medical data, handling time-series data, which contain irregularities, presents the greatest difficulty. In the present paper, we propose a first-order rule discovery method for handling such data. The present method is an attempt to use graph structure to represent time-series data and reduce the graph using specified rules for inducing hypothesis. In order to evaluate the proposed method, we conducted experiments using real-world medical data.