Explaining and Improving BERT Performance on Lexical Semantic Change Detection
暂无分享,去创建一个
Jonas Kuhn | Dominik Schlechtweg | Sabine Schulte im Walde | Sinan Kurtyigit | Severin Laicher | Jonas Kuhn | Dominik Schlechtweg | Severin Laicher | Sinan Kurtyigit
[1] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[2] Luke S. Zettlemoyer,et al. Deep Contextualized Word Representations , 2018, NAACL.
[3] Roberto Navigli,et al. Word sense disambiguation: A survey , 2009, CSUR.
[4] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function , 1963 .
[5] Dominik Schlechtweg,et al. OP-IMS @ DIACR-Ita: Back to the Roots: SGNS+OP+CD still Rocks Semantic Change Detection , 2020, EVALITA.
[6] M. Cugmas,et al. On comparing partitions , 2015 .
[7] Dominik Schlechtweg,et al. A Wind of Change: Detecting and Evaluating Lexical Semantic Change across Times and Domains , 2019, ACL.
[8] Dominik Schlechtweg,et al. CL-IMS @ DIACR-Ita: Volente o Nolente: BERT does not outperform SGNS on Semantic Change Detection , 2020, ArXiv.
[9] Erik Velldal,et al. Diachronic word embeddings and semantic shifts: a survey , 2018, COLING.
[10] Elaine Zosa,et al. Capturing Evolution in Word Usage: Just Add More Clusters? , 2020, WWW.
[11] Simon Hengchen,et al. Time-Out: Temporal Referencing for Robust Modeling of Lexical Semantic Change , 2019, ACL.
[12] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .
[13] Jakub Sido,et al. UWB at SemEval-2020 Task 1: Lexical Semantic Change Detection , 2020, SEMEVAL.
[14] Christin Beck. DiaSense at SemEval-2020 Task 1: Modeling Sense Change via Pre-trained BERT Embeddings , 2020, SemEval@COLING.
[15] Hinrich Schütze,et al. Automatic Word Sense Discrimination , 1998, Comput. Linguistics.
[16] E. Forgy,et al. Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .
[17] Sorana D. Bolboacă,et al. PEARSON VERSUS SPEARMAN, KENDALL'S TAU CORRELATION ANALYSIS ON STRUCTURE-ACTIVITY RELATIONSHIPS OF BIOLOGIC ACTIVE COMPOUNDS , 2005 .
[18] Andrey Kutuzov,et al. UiO-UvA at SemEval-2020 Task 1: Contextualised Embeddings for Lexical Semantic Change Detection , 2020, SEMEVAL.
[19] Ming-Wei Chang,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.
[20] Benoît Sagot,et al. What Does BERT Learn about the Structure of Language? , 2019, ACL.
[21] Lars Borin,et al. Survey of Computational Approaches to Diachronic Conceptual Change , 2018, ArXiv.
[22] Anthony Wirth,et al. Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.
[23] David Sanchez,et al. Dialectometric analysis of language variation in Twitter , 2017, VarDial.
[24] Elaine Zosa,et al. Discovery Team at SemEval-2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection , 2020, SemEval@COLING.
[25] Mario Giulianelli,et al. Analysing Lexical Semantic Change with Contextualised Word Representations , 2020, ACL.
[26] Ehsaneddin Asgari,et al. Unsupervised Embedding-based Detection of Lexical Semantic Changes , 2020, SemEval@COLING.
[27] Kawin Ethayarajh,et al. How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings , 2019, EMNLP.
[28] Barbara McGillivray,et al. SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection , 2020, SEMEVAL.
[29] Simon Hengchen,et al. Challenges for Computational Lexical Semantic Change , 2021, ArXiv.
[30] Dominik Schlechtweg,et al. Diachronic Usage Relatedness (DURel): A Framework for the Annotation of Lexical Semantic Change , 2018, NAACL.