Smoothing splines estimators in functional linear regression with errors-in-variables

The total least squares method is generalized in the context of the functional linear model. A smoothing splines estimator of the functional coefficient of the model is first proposed without noise in the covariates and an asymptotic result for this estimator is obtained. Then, this estimator is adapted to the case where the covariates are noisy and an upper bound for the convergence speed is also derived. The estimation procedure is evaluated by means of simulations.

[1]  Sabine Van Huffel,et al.  Appropriate cross-validation for regularized errors-in-variables linear models , 2004 .

[2]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[3]  Michael G. Schimek,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2000 .

[4]  Brian D. Marx,et al.  Generalized Linear Regression on Sampled Signals and Curves: A P-Spline Approach , 1999, Technometrics.

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Jane-Ling Wang,et al.  Functional quasi‐likelihood regression models with smooth random effects , 2003 .

[7]  Wayne A. Fuller,et al.  Estimated true values for errors-in-variables models , 1997 .

[8]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[9]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[10]  A. Satorra,et al.  Measurement Error Models , 1988 .

[11]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[12]  A. Cuevas,et al.  Linear functional regression: The case of fixed design and functional response , 2002 .

[13]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[14]  H. Cardot Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .

[15]  Denis Bosq,et al.  Linear Processes in Function Spaces , 2000 .

[16]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[17]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[18]  P. Sarda,et al.  Functional linear model , 1999 .

[19]  H C EilersPaul,et al.  Generalized linear regression on sampled signals and curves , 1999 .

[20]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[21]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[22]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[23]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[24]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[25]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[26]  F. Utreras Natural spline functions, their associated eigenvalue problem , 1983 .

[27]  James Demmel,et al.  The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..

[28]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[29]  L. Gleser Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results , 1981 .

[30]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .