Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field

Atomic migration under an electric field, electromigration, in molten and crystalline Ge2Sb2Te5 was studied using a pulsed dc stress to an isolated line structure. Under a single pulse (∼10−3 s), Ge2Sb2Te5 was melted by Joule heating, and an electrostatic force-induced drift of Ge and Sb toward the cathode and Te toward the anode was observed. Effective charge numbers were calculated to be 0.28, 0.38, and −0.29 for Ge, Sb, and Te, respectively. Electromigration in the crystalline state was studied by applying a 10 MHz pulsed dc; constituent elements migrated toward the cathode, which suggests a hole wind-force operating in this phase.