lidR: An R package for analysis of Airborne Laser Scanning (ALS) data

Abstract Airborne laser scanning (ALS) is a remote sensing technology known for its applicability in natural resources management. By quantifying the three-dimensional structure of vegetation and underlying terrain using laser technology, ALS has been used extensively for enhancing geospatial knowledge in the fields of forestry and ecology. Structural descriptions of vegetation provide a means of estimating a range of ecologically pertinent attributes, such as height, volume, and above-ground biomass. The efficient processing of large, often technically complex datasets requires dedicated algorithms and software. The continued promise of ALS as a tool for improving ecological understanding is often dependent on user-created tools, methods, and approaches. Due to the proliferation of ALS among academic, governmental, and private-sector communities, paired with requirements to address a growing demand for open and accessible data, the ALS community is recognising the importance of free and open-source software (FOSS) and the importance of user-defined workflows. Herein, we describe the philosophy behind the development of the lidR package. Implemented in the R environment with a C/C++ backend, lidR is free, open-source and cross-platform software created to enable simple and creative processing workflows for forestry and ecology communities using ALS data. We review current algorithms used by the research community, and in doing so raise awareness of current successes and challenges associated with parameterisation and common implementation approaches. Through a detailed description of the package, we address the key considerations and the design philosophy that enables users to implement user-defined tools. We also discuss algorithm choices that make the package representative of the ‘state-of-the-art’ and we highlight some internal limitations through examples of processing time discrepancies. We conclude that the development of applications like lidR are of fundamental importance for developing transparent, flexible and open ALS tools to ensure not only reproducible workflows, but also to offer researchers the creative space required for the progress and development of the discipline.

[1]  Huaguo Huang,et al.  A 3D approach to reconstruct continuous optical images using lidar and MODIS , 2015, Forest Ecosystems.

[2]  P. Gong,et al.  Isolating individual trees in a savanna woodland using small footprint lidar data , 2006 .

[3]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Wuming Zhang,et al.  An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation , 2016, Remote. Sens..

[5]  Sylvie Durrieu,et al.  On the interest of penetration depth, canopy area and volume metrics to improve Lidar-based models of forest parameters , 2016 .

[6]  Antonio Luis Montealegre,et al.  A Comparison of Open-Source LiDAR Filtering Algorithms in a Mediterranean Forest Environment , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  D. Roberts,et al.  Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape , 2004 .

[8]  Nicholas C. Coops,et al.  Challenges of Multi-Temporal and Multi-Sensor Forest Growth Analyses in a Highly Disturbed Boreal Mixedwood Forests , 2019, Remote. Sens..

[9]  Owen F Price,et al.  The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest. , 2016, Journal of environmental management.

[10]  Roland Siegwart,et al.  Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration , 2012 .

[11]  Randolph H. Wynne,et al.  Estimating plot-level tree heights with lidar : local filtering with a canopy-height based variable window size , 2002 .

[12]  Nicholas C. Coops,et al.  Estimating Forest Stand Age from LiDAR-Derived Predictors and Nearest Neighbor Imputation , 2014 .

[13]  K. Clint Slatton,et al.  An adaptive multiscale filter for segmenting vegetation in ALSM data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Scott V. Ollinger,et al.  Tree Species Traits Determine the Success of LiDAR-Based Crown Mapping in a Mixed Temperate Forest , 2020, Remote. Sens..

[15]  Martin Isenburg,et al.  Generating spike-free digital surface models using LiDAR raw point clouds: A new approach for forestry applications , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[16]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[17]  Andrew Thomas Hudak,et al.  A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[18]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[19]  Demetrios Gatziolis Dynamic Range-based Intensity Normalization for Airborne, Discrete Return Lidar Data of Forest Canopies , 2011 .

[20]  A. Hudak,et al.  Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability , 2009 .

[21]  Tomas Brandtberg Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America , 2003 .

[22]  T. Noland,et al.  Automated delineation of individual tree crowns from lidar data by multi-scale analysis and segmentation , 2012 .

[23]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[24]  Daniel Clewley,et al.  The Sorted Pulse Data Software Library (SPDLib): open source tools for processing LiDAR data. , 2011 .

[25]  Domen Mongus,et al.  Efficient method for lossless LIDAR data compression , 2011 .

[26]  Laura S. Kenefic,et al.  Layer Stacking: A Novel Algorithm for Individual Forest Tree Segmentation from LiDAR Point Clouds , 2017 .

[27]  Maggi Kelly,et al.  A New Method for Segmenting Individual Trees from the Lidar Point Cloud , 2012 .

[28]  Nusret Demir,et al.  Advanced Lake Shoreline Extraction Approach by Integration of SAR Image and LIDAR Data , 2019 .

[29]  Nicholas C. Coops,et al.  Enhancing the Estimation of Stem-Size Distributions for Unimodal and Bimodal Stands in a Boreal Mixedwood Forest with Airborne Laser Scanning Data , 2018 .

[30]  Menas Kafatos,et al.  Estimating stem volume and biomass of Pinus koraiensis using LiDAR data , 2010, Journal of Plant Research.

[31]  Yinghai Ke,et al.  A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing , 2011 .

[32]  Manuel Menezes de Oliveira Neto,et al.  Real-time detection of planar regions in unorganized point clouds , 2015, Pattern Recognit..

[33]  Martin Isenburg,et al.  Effect of slope on treetop detection using a LiDAR Canopy Height Model , 2015 .

[34]  Chengcui Zhang,et al.  A progressive morphological filter for removing nonground measurements from airborne LIDAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  Jianping Wu,et al.  Automated derivation of urban building density information using airborne LiDAR data and object-based method , 2010 .

[36]  Juha Hyyppä,et al.  International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Thomas Hilker,et al.  Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling , 2010 .

[38]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[39]  Michele Dalponte,et al.  Tree Species Classification in a Highly Diverse Subtropical Forest Integrating UAV-Based Photogrammetric Point Cloud and Hyperspectral Data , 2019, Remote. Sens..

[40]  Txomin Hermosilla,et al.  Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates , 2014 .

[41]  B. Somers,et al.  Pear Flower Cluster Quantification Using RGB Drone Imagery , 2020, Agronomy.

[42]  Hiroshi Akima,et al.  A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points , 1978, TOMS.

[43]  A. Stovall,et al.  Quantifying wetland microtopography with terrestrial laser scanning , 2019, Remote Sensing of Environment.

[44]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[45]  Jun Zhang,et al.  A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[46]  Tristan R. H. Goodbody,et al.  Fine-Scale Spatial and Spectral Clustering of UAV-Acquired Digital Aerial Photogrammetric (DAP) Point Clouds for Individual Tree Crown Detection and Segmentation , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[47]  Luis Carrasco,et al.  Metrics of Lidar-Derived 3D Vegetation Structure Reveal Contrasting Effects of Horizontal and Vertical Forest Heterogeneity on Bird Species Richness , 2019, Remote. Sens..

[48]  S. Levick,et al.  Savanna vegetation structure in the Brazilian Cerrado allows for the accurate estimation of aboveground biomass using terrestrial laser scanning , 2020 .

[49]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[50]  Neal A. Scott,et al.  Characterizing Forest Succession in Central Ontario using Lidar-derived Indices , 2011 .

[51]  William J. Elliot,et al.  Effects of DEM Source and Resolution on WEPP Hydrologic and Erosion Simulation: A Case Study of Two Forest Watersheds in Northern Idaho , 2009 .

[52]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[53]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[54]  Alexis Achim,et al.  Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size , 2017 .

[55]  G. Vosselman SLOPE BASED FILTERING OF LASER ALTIMETRY DATA , 2000 .

[56]  Marek K. Jakubowski,et al.  Tradeoffs between lidar pulse density and forest measurement accuracy , 2013 .

[57]  R. Fournier,et al.  Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .

[58]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[59]  Ross Nelson,et al.  How did we get here? An early history of forestry lidar1 , 2013 .

[60]  B. Koch,et al.  A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest , 2008, Sensors.

[61]  Parker VanValkenburgh,et al.  Lasers Without Lost Cities: Using Drone Lidar to Capture Architectural Complexity at Kuelap, Amazonas, Peru , 2020 .

[62]  Joanne C. White,et al.  Remote Sensing Technologies for Enhancing Forest Inventories: A Review , 2016 .

[63]  P. Krzystek,et al.  Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data , 2012 .

[64]  N. Coops,et al.  Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data , 2018, Remote Sensing of Environment.

[65]  Edzer J. Pebesma,et al.  Applied Spatial Data Analysis with R - Second Edition , 2008, Use R!.

[66]  Blake M. Allan,et al.  The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems , 2020, Remote Sensing of Environment.

[67]  Mikko T. Niemi,et al.  Extracting Canopy Surface Texture from Airborne Laser Scanning Data for the Supervised and Unsupervised Prediction of Area-Based Forest Characteristics , 2016, Remote. Sens..

[68]  M. Keller,et al.  Tree height and tropical forest biomass estimation , 2013 .

[69]  Heiko Balzter,et al.  Individual Tree Crown Delineation from Airborne Laser Scanning for Diseased Larch Forest Stands , 2017, Remote. Sens..

[70]  Carlos Alberto Silva,et al.  Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling , 2019, Remote. Sens..

[71]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[72]  B. Koch,et al.  Detection of individual tree crowns in airborne lidar data , 2006 .

[73]  Juha Hyyppä,et al.  DECIDUOUS-CONIFEROUS TREE CLASSIFICATION USING DIFFERENCE BETWEEN FIRST AND LAST PULSE LASER SIGNATURES , 2007 .

[74]  David A. Luther,et al.  The value of local habitat heterogeneity and productivity when estimating avian species richness and species of concern , 2020 .

[75]  Richard M. Lucas,et al.  Sorted pulse data (SPD) library - Part II: A processing framework for LiDAR data from pulsed laser systems in terrestrial environments , 2013, Comput. Geosci..

[76]  C. Silva,et al.  Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data , 2016 .

[77]  Yanjun Su,et al.  Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas , 2016 .

[78]  C. Silva,et al.  Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning , 2019, Ecological Modelling.

[79]  Michele Dalponte,et al.  Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data , 2016, Methods in ecology and evolution.

[80]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[81]  Norbert Pfeifer,et al.  New Associate Editor pp iii-iv Segmentation of airborne laser scanning data using a slope adaptive neighborhood , 2006 .

[82]  C. Mallet,et al.  Large-scale road detection in forested mountainous areas using airborne topographic lidar data , 2016 .

[83]  S. Buján,et al.  Large scale semi-automatic detection of forest roads from low density LiDAR data on steep terrain in Northern Spain , 2019, iForest - Biogeosciences and Forestry.

[84]  Geoffrey J. Hay,et al.  Development of a pit filling algorithm for LiDAR canopy height models , 2009, Comput. Geosci..

[85]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[86]  Wolfgang Huber,et al.  EBImage—an R package for image processing with applications to cellular phenotypes , 2010, Bioinform..

[87]  Ross A. Hill,et al.  Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[88]  Richard A. Fournier,et al.  Predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: A case study of Newfoundland conifer species , 2015 .

[89]  Martin Isenburg,et al.  LASzip: Lossless Compression of Lidar Data , 2013 .

[90]  E. Pebesma,et al.  Classes and Methods for Spatial Data , 2015 .

[91]  E. Næsset,et al.  Forestry Applications of Airborne Laser Scanning , 2014, Managing Forest Ecosystems.

[92]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[93]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[94]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[95]  Sylvie Durrieu,et al.  Multi-level filtering segmentation to measure individual tree parameters based on Lidar data: Application to a mountainous forest with heterogeneous stands , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[96]  Nicholas C. Coops,et al.  Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data , 2019, Remote Sensing of Environment.

[97]  J. Weishampel,et al.  Scaling lidar-derived rainforest canopy metrics across a Mesoamerican landscape , 2019, International Journal of Remote Sensing.

[98]  Juan de la Riva,et al.  Interpolation Routines Assessment in ALS-Derived Digital Elevation Models for Forestry Applications , 2015, Remote. Sens..

[99]  Martin Isenburg,et al.  Generating pit-free canopy height models from airborne lidar , 2014 .

[100]  Alberto Guarnieri,et al.  Vegetation filtering of waveform terrestrial laser scanner data for DTM production , 2013 .

[101]  J. Eitel,et al.  viewshed3d: An r package for quantifying 3D visibility using terrestrial lidar data , 2020, Methods in Ecology and Evolution.

[102]  Jae Ogilvie,et al.  Fusing Digital Elevation Models to Improve Hydrological Interpretations , 2017 .

[103]  Luiz Carlos Estraviz Rodriguez,et al.  Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning , 2017, Comput. Electron. Agric..

[104]  Michael J. Olsen,et al.  Individual snag detection using neighborhood attribute filtered airborne lidar data , 2015 .

[105]  Jing Li,et al.  Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas , 2009 .

[106]  Edzer Pebesma,et al.  Simple Features for R: Standardized Support for Spatial Vector Data , 2018, R J..

[107]  J. A. Senn,et al.  A new concept for estimating the influence of vegetation on throughfall kinetic energy using aerial laser scanning , 2020, Earth Surface Processes and Landforms.

[108]  D. Whitman,et al.  Comparison of Three Algorithms for Filtering Airborne Lidar Data , 2005 .

[109]  Joanne C. White,et al.  A model development and application guide for generating an enhanced forest inventory using airborne laser scanning data and an area-based approach , 2017 .

[110]  Sylvie Durrieu,et al.  PTrees: A point-based approach to forest tree extraction from lidar data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[111]  Bingbo Gao,et al.  State-of-the-Art: DTM Generation Using Airborne LIDAR Data , 2017, Sensors.

[112]  K. Bollmann,et al.  Habitat assessment for forest dwelling species using LiDAR remote sensing: Capercaillie in the Alps , 2009 .

[113]  Alistair M. S. Smith,et al.  Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables , 2009, Remote. Sens..