Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis

This paper proposes a new method to measure productivity change of decision making units in the full input-output space. The new approach is based on the calculation of the least distance to the Pareto-efficient frontier and hence provides the closest targets for evaluated decision making units to reach the strongly efficient frontier with least effort. Another advantage of the new methodology is that it always leads to feasible solutions. The productivity change in the new approach is operationalized as a Luenberger-type indicator in the Data Envelopment Analysis framework and it is decomposed into efficiency change and technical change. The paper empirically illustrates the new method using recent data on the Spanish quality wine sector.

[1]  W. Cooper,et al.  RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA , 1999 .

[2]  R. Shephard Cost and production functions , 1953 .

[3]  Chulwoo Baek,et al.  The relevance of DEA benchmarking information and the Least-Distance Measure , 2009, Math. Comput. Model..

[4]  Juan Aparicio,et al.  Families of linear efficiency programs based on Debreu’s loss function , 2012 .

[5]  Kazuyuki Sekitani,et al.  Input-output substitutability and strongly monotonic p-norm least distance DEA measures , 2014, Eur. J. Oper. Res..

[6]  Kazuyuki Sekitani,et al.  Efficiency measurement with a non-convex free disposal hull technology , 2016, J. Oper. Res. Soc..

[7]  Walter Briec,et al.  Hölder Distance Function and Measurement of Technical Efficiency , 1999 .

[8]  W. Briec,et al.  Technical efficiency and distance to a reverse convex set , 1999, Eur. J. Oper. Res..

[9]  S. Grosskopf,et al.  PRODUCTIVITY GROWTH IN APEC COUNTRIES , 1996 .

[10]  Léopold Simar,et al.  On Testing Equality of Distributions of Technical Efficiency Scores , 2006 .

[11]  C. Lovell,et al.  The Decomposition of Malmquist Productivity Indexes , 2003 .

[12]  Patrick T. Harker,et al.  Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA , 1999 .

[13]  Laurens Cherchye,et al.  A comment on multi-stage DEA methodology , 2001, Oper. Res. Lett..

[14]  R. Chambers Exact nonradial input, output, and productivity measurement , 2002 .

[15]  Juan Aparicio,et al.  Decomposing technical inefficiency using the principle of least action , 2014, Eur. J. Oper. Res..

[16]  Walter Briec,et al.  Minimum Distance to the Complement of a Convex Set: Duality Result , 1997 .

[17]  Juan Aparicio,et al.  The directional profit efficiency measure: on why profit inefficiency is either technical or allocative , 2013 .

[18]  J. Zofío,et al.  Graph efficiency and productivity measures: an application to US agriculture , 2001 .

[19]  Kazuyuki Sekitani,et al.  Distance optimization approach to ratio-form efficiency measures in data envelopment analysis , 2014 .

[20]  Qi Li Nonparametric testing of closeness between two unknown distribution functions , 1996 .

[21]  Juan Aparicio,et al.  Closest targets and minimum distance to the Pareto-efficient frontier in DEA , 2007 .

[22]  Juan Aparicio,et al.  A well-defined efficiency measure for dealing with closest targets in DEA , 2013, Appl. Math. Comput..

[23]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[24]  Pekka Korhonen,et al.  Structural Comparison of Data Envelopment Analysis and Multiple Objective Linear Programming , 1998 .

[25]  D. Luenberger New optimality principles for economic efficiency and equilibrium , 1992 .

[26]  Atsuhiko Kai,et al.  LEAST DISTANCE BASED INEFFICIENCY MEASURES ON THE PARETO-EFFICIENT FRONTIER IN DEA , 2012 .

[27]  Fernando Borrás,et al.  Benchmarking in Healthcare: An Approach Based on Closest Targets , 2014 .

[28]  W. Briec,et al.  The Luenberger productivity indicator: An economic specification leading to infeasibilities , 2009 .

[29]  Alireza Amirteimoori,et al.  A Euclidean distance-based measure of efficiency in data envelopment analysis , 2010 .

[30]  Juan Aparicio,et al.  Closest targets and strong monotonicity on the strongly efficient frontier in DEA , 2014 .

[31]  R. Färe,et al.  Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach , 1992 .

[32]  Israfil Roshdi,et al.  DIRECTIONAL CLOSEST-TARGET BASED MEASURES OF EFFICIENCY: HOLDER NORMS APPROACH , 2013 .

[33]  Rulon D. Pope,et al.  Aggregate Productivity Measures , 1996 .

[34]  Emmanuel Thanassoulis,et al.  Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies , 2003 .

[35]  Eduardo González,et al.  From efficiency measurement to efficiency improvement: The choice of a relevant benchmark , 2001, Eur. J. Oper. Res..

[36]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[37]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[38]  Tim Coelli,et al.  A multi-stage methodology for the solution of orientated DEA models , 1998, Oper. Res. Lett..

[39]  Hervé Leleu,et al.  Dual Representations of Non-Parametric Technologies and Measurement of Technical Efficiency , 2003 .

[40]  W. Briec,et al.  Luenberger and Malmquist Productivity Indices: Theoretical Comparisons and Empirical Illustration , 2003 .

[41]  José Luis Zofío,et al.  Malmquist productivity index decompositions: a unifying framework , 2007 .

[42]  P. W. Wilson,et al.  Productivity Growth in Industrialized Countries , 1998 .

[43]  Juan Aparicio,et al.  The relevance of DEA benchmarking information and the Least-Distance Measure: Comment , 2010, Math. Comput. Model..

[44]  J. Pastor,et al.  On how to properly calculate the Euclidean distance-based measure in DEA , 2014 .

[45]  Emmanuel Thanassoulis,et al.  Malmquist Indexes Using a Geometric Distance Function (GDF). Application to a Sample of Portuguese Bank Branches , 2004 .

[46]  Jesús T. Pastor,et al.  An enhanced DEA Russell graph efficiency measure , 1999, Eur. J. Oper. Res..

[47]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[48]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[49]  Kristiaan Kerstens,et al.  Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator , 2009 .

[50]  Walter Briec,et al.  Metric Distance Function and Profit: Some Duality Results , 1999 .

[51]  Sebastián Lozano,et al.  Determining a sequence of targets in DEA , 2005, J. Oper. Res. Soc..

[52]  José Luis Zofío,et al.  Hyperbolic Efficiency and Parametric Distance Functions: With Application to Spanish Savings Banks , 2005 .