Sparse Fourier Transform via Butterfly Algorithm

This paper introduces a fast algorithm for computing sparse Fourier transforms with spatial and Fourier data supported on curves or surfaces. This problem appears naturally in several important applications of wave scattering, digital signal processing, and reflection seismology. The main idea of the algorithm is that the interaction between a frequency region and a spatial region is approximately low rank if the product of their widths are bounded by the maximum frequency. Based on this property, we can approximate the interaction between these two boxes accurately and compactly using a small number of equivalent sources. The overall structure of the algorithm follows the butterfly algorithm. The computation is further accelerated by exploiting the tensor-product property of the Fourier kernel in two and three dimensions. The proposed algorithm is accurate and has the optimal complexity. We present numerical results in both two and three dimensions.

[1]  Michael O'Neil,et al.  A new class of analysis-based fast transforms , 2007 .

[2]  Vasile Gradinaru,et al.  Fourier transform on sparse grids: Code design and the time dependent Schrödinger equation , 2007, Computing.

[3]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[4]  Ronald R. Coifman,et al.  Efficient Computation of Oscillatory Integrals via Adaptive Multiscale Local Fourier Bases , 2000 .

[5]  David H. Bailey,et al.  The Fractional Fourier Transform and Applications , 1991, SIAM Rev..

[6]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[7]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[8]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[9]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[10]  Stefan Kunis,et al.  Fast evaluation of trigonometric polynomials from hyperbolic crosses , 2006, Numerical Algorithms.

[11]  Laurent Demanet,et al.  Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..

[12]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[13]  Chris Anderson,et al.  Rapid Computation of the Discrete Fourier Transform , 1996, SIAM J. Sci. Comput..

[14]  Gary F. Margrave,et al.  Wavefield extrapolation by nonstationary phase shift , 1999 .

[15]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[16]  O. Bucci,et al.  Optimal interpolation of radiated fields over a sphere , 1991 .

[17]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[18]  L. Greengard,et al.  Short Note: The type 3 nonuniform FFT and its applications , 2005 .

[19]  J.M. Song,et al.  Fast Fourier transform of sparse spatial data to sparse Fourier data , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[20]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[21]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[22]  Weng Cho Chew,et al.  A sparse data fast Fourier transform (SDFFT) - algorithm and implementation , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[23]  Lexing Ying,et al.  Fast Directional Multilevel Algorithms for Oscillatory Kernels , 2007, SIAM J. Sci. Comput..

[24]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[25]  L. Greengard,et al.  The type 3 nonuniform FFT and its applications June - , 2005 .

[26]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[27]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[28]  F. Delvos,et al.  A discrete Fourier transform scheme for Boolean sums of trigonometric operators , 1989 .

[29]  Lexing Ying,et al.  Fast Computation of Partial Fourier Transforms , 2009, Multiscale Model. Simul..

[30]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .