A fuzzy robust scheduling approach for product development projects

Abstract Efficient scheduling of a product development project is difficult, since a development project is usually unique in nature and high level of design imprecision exists at the early stages of product development. Moreover, risk-averse project managers are often more interested in estimating the risk of a schedule being late over all potential realizations. The objective of this research is to develop a robust scheduling methodology based on fuzzy set theory for uncertain product development projects. The imprecise temporal parameters involved in the project are represented by fuzzy sets. A measure of schedule robustness based on qualitative possibility theory is proposed to guide the search process to determine the robust schedule; i.e., the schedule with the best worst-case performance. A genetic algorithm approach is developed for solving the problem with acceptable performance. An example of electronic product development project is used to illustrate the concept developed.

[1]  F A Lootsma,et al.  THEORY AND METHODOLOGY STOCHASTIC AND FUZZY PERT , 1989 .

[2]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[3]  H. Rommelfanger Fulpal — An Interactive Method for Solving (Multiobjective) Fuzzy Linear Programming Problems , 1990 .

[4]  S. H. Nasution Fuzzy Critical Path Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[5]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .

[6]  Didier Dubois,et al.  Fuzzy constraints in job-shop scheduling , 1995, J. Intell. Manuf..

[7]  S. Chanas Fuzzy Optimization in Networks , 1987 .

[8]  Yeong-Dae Kim,et al.  Search Heuristics for Resource Constrained Project Scheduling , 1996 .

[9]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[10]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[11]  Eric Bourreau,et al.  Solving resource-constrained project scheduling problems with CHIP , 1996 .

[12]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[13]  Gündüz Ulusoy,et al.  A survey on the resource-constrained project scheduling problem , 1995 .

[14]  F. Lootsma Stochastic and Fuzzy Pert , 1989 .

[15]  Roman Slowinski,et al.  Fuzzy priority heuristics for project scheduling , 1996, Fuzzy Sets Syst..

[16]  J. Kacprzyk,et al.  Optimization Models Using Fuzzy Sets and Possibility Theory , 1987 .

[17]  Ronald E. Giachetti,et al.  A methodology for the reduction of imprecision in the engineering process , 1997, Eur. J. Oper. Res..

[18]  Panagiotis Kouvelis,et al.  Robust scheduling to hedge against processing time uncertainty in single-stage production , 1995 .

[19]  Colin E. Bell,et al.  Solving resource-constrained project scheduling problems by A* search , 1990 .

[20]  Philippe Fortemps,et al.  Jobshop scheduling with imprecise durations: a fuzzy approach , 1997, IEEE Trans. Fuzzy Syst..

[21]  Hiroaki Ishii,et al.  An open shop scheduling problem with fuzzy allowable time and fuzzy resource constraint , 2000, Fuzzy Sets Syst..

[22]  Viswanathan V Krishnan,et al.  Managing the simultaneous execution of coupled phases in concurrent product development , 1996 .

[23]  S. French Decision Theory: An Introduction to the Mathematics of Rationality , 1986 .

[24]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[25]  Mitsuo Gen,et al.  An evolution programme for the resource-constrained project scheduling problem , 1998, Int. J. Comput. Integr. Manuf..

[26]  Marc Roubens,et al.  Ranking and defuzzification methods based on area compensation , 1996, Fuzzy Sets Syst..

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Hiroaki Ishii,et al.  Two scheduling problems with fuzzy due-dates , 1992 .

[29]  Stephen C. Graves,et al.  A Review of Production Scheduling , 1981, Oper. Res..

[30]  Andrzej Jaszkiewicz,et al.  Fuzzy project scheduling system for software development , 1994 .

[31]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[32]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[33]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[34]  Salah E. Elmaghraby,et al.  Activity networks: Project planning and control by network models , 1977 .

[35]  Linet Özdamar,et al.  A genetic algorithm approach to a general category project scheduling problem , 1999, IEEE Trans. Syst. Man Cybern. Part C.

[36]  D. Dubois,et al.  Qualitative possibility theory and its applications to constraint satisfaction and decision under uncertainty , 1999 .

[37]  K. Neumann Recent Developments In Stochastic Activity Networks , 1984 .

[38]  H. Ishibuchi,et al.  Local search algorithms for flow shop scheduling with fuzzy due-dates☆ , 1994 .

[39]  Mao-Jiun J. Wang,et al.  Ranking fuzzy numbers with integral value , 1992 .

[40]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[41]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[42]  Juite Wang,et al.  A fuzzy project scheduling approach to minimize schedule risk for product development , 2002, Fuzzy Sets Syst..

[43]  K. McConway,et al.  Decision Theory: An Introduction to the Mathematics of Rationality , 1986 .