A material point method for snow simulation

Snow is a challenging natural phenomenon to visually simulate. While the graphics community has previously considered accumulation and rendering of snow, animation of snow dynamics has not been fully addressed. Additionally, existing techniques for solids and fluids have difficulty producing convincing snow results. Specifically, wet or dense snow that has both solid- and fluid-like properties is difficult to handle. Consequently, this paper presents a novel snow simulation method utilizing a user-controllable elasto-plastic constitutive model integrated with a hybrid Eulerian/Lagrangian Material Point Method. The method is continuum based and its hybrid nature allows us to use a regular Cartesian grid to automate treatment of self-collision and fracture. It also naturally allows us to derive a grid-based semi-implicit integration scheme that has conditioning independent of the number of Lagrangian particles. We demonstrate the power of our method with a variety of snow phenomena including complex character interactions.

[1]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[2]  Annie Luciani,et al.  A multi-scale physical model of granular materials , 1995 .

[3]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[4]  Eric Galin,et al.  Heat Transfer Simulation for Modeling Realistic Winter Sceneries , 2010, Comput. Graph. Forum.

[5]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[6]  Cristina Jommi,et al.  Snow as an elastic viscoplastic bonded continuum: a modelling approach , 2005 .

[7]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[8]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[9]  M. Berzins,et al.  Analysis and reduction of quadrature errors in the material point method (MPM) , 2008 .

[10]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.

[11]  Paul Fearing,et al.  Computer modelling of fallen snow , 2000, SIGGRAPH.

[12]  Herbert A. Mang,et al.  Large Strain Finite-Element Analysis of Snow , 1996 .

[13]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[14]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[15]  Lucio Flores,et al.  Snow avalanche effects for Mummy 3 , 2008, SIGGRAPH '08.

[16]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[17]  Gerald Osborn Handbook of Snow: Principles, Processes, Management & Use, edited by D.M. Gray and D.H. Male , 1982 .

[18]  Annie Luciani,et al.  Physical models of loose soils dynamically marked by a moving object , 1996, Proceedings Computer Animation '96.

[19]  Jessica K. Hodgins,et al.  Animating Sand, Mud, and Snow , 1999, Comput. Graph. Forum.

[20]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[21]  TeranJoseph,et al.  A material point method for snow simulation , 2013 .

[22]  Ming C. Lin,et al.  Modeling Ice Dynamics As A Thin-Film Stefan Problem , 2006 .

[23]  T. Hinks Wind-Driven Snow Buildup Using a Level Set Approach , 2009 .

[24]  Yizhou Yu,et al.  Particle-based simulation of granular materials , 2005, SCA '05.

[25]  Miguel A. Otaduy,et al.  Simulation of High-Resolution Granular Media , 2009, CEIG.

[26]  Victor J. Milenkovic Position-based physics: simulating the motion of many highly interacting spheres and polyhedra , 1996, SIGGRAPH.

[27]  James F. O'Brien,et al.  Modeling the accumulation of wind-driven snow , 2002, SIGGRAPH '02.

[28]  Matthias Teschner,et al.  High-Resolution Simulation of Granular Material with SPH , 2012, VRIPHYS.

[29]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[30]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[31]  Bo Zhu,et al.  Animating Sand as a Surface Flow , 2010, Eurographics.

[32]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, SIGGRAPH 2010.

[33]  David I. W. Levin,et al.  Eulerian solid simulation with contact , 2011, SIGGRAPH 2011.

[34]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[35]  Gavin S. P. Miller,et al.  Globular dynamics: A connected particle system for animating viscous fluids , 1989, Comput. Graph..

[36]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[37]  L. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[38]  Ignacio García-Fernández,et al.  Interactive Terrain Simulation and Force Distribution Models in Sand Piles , 2006, ACRI.

[39]  Andrew Selle,et al.  Detail preserving continuum simulation of straight hair , 2009, SIGGRAPH 2009.

[40]  Yoshinori Dobashi,et al.  A Modeling and Rendering Method for Snow by Using Metaballs , 1997, Comput. Graph. Forum.

[41]  Robert L. Brown A volumetric constitutive law for snow based on a neck growth model , 1980 .

[42]  Kevin Lee,et al.  Prep and landing: Christmas in July: the effects snow process , 2010, SIGGRAPH '10.

[43]  Miguel A. Otaduy,et al.  SPH granular flow with friction and cohesion , 2011, SCA '11.

[44]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[45]  François Nicot,et al.  Constitutive modelling of snow as a cohesive-granular material , 2004 .

[46]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[47]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[48]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[49]  Alain Fournier,et al.  The computer modelling of fallen snow , 2000 .

[50]  D. Bresch,et al.  Mathematical Modeling of Powder‐Snow Avalanche Flows , 2009, 0901.2781.

[51]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[52]  Ming C. Lin,et al.  Visual simulation of ice crystal growth , 2003, SCA '03.

[53]  Cristina Jommi,et al.  Numerical integration of an elastic–viscoplastic constitutive model for dry metamorphosed snow , 2009 .

[54]  Greg Turk,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA 2010.