Multiple Change Point Analysis Of Multivariate Data Via Energy Statistics

[1]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 1971, Scientific Reports.

[2]  Piotr Fryzlewicz,et al.  Multiscale and multilevel technique for consistent segmentation of nonstationary time series , 2016, 1611.09727.

[3]  Piotr Fryzlewicz,et al.  Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation , 2015, 1611.08639.

[4]  Piotr Fryzlewicz,et al.  Wild binary segmentation for multiple change-point detection , 2014, 1411.0858.

[5]  Hui Wang,et al.  Distributional change of monthly precipitation due to climate change: comprehensive examination of dataset in southeastern United States , 2014 .

[6]  Idris A. Eckley,et al.  changepoint: An R Package for Changepoint Analysis , 2014 .

[7]  Changliang Zou,et al.  Nonparametric maximum likelihood approach to multiple change-point problems , 2014, 1405.7173.

[8]  David S. Matteson,et al.  ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data , 2013, 1309.3295.

[9]  Douglas M. Hawkins,et al.  Detection of multiple change-points in multivariate data , 2013 .

[10]  David S. Matteson,et al.  A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data , 2013, 1306.4933.

[11]  Rebecca Willett,et al.  Change-Point Detection for High-Dimensional Time Series With Missing Data , 2012, IEEE Journal of Selected Topics in Signal Processing.

[12]  Mark Holmes,et al.  Nonparametric tests for change-point detection à la Gombay and Horváth , 2012, J. Multivar. Anal..

[13]  Masoud M Nasari,et al.  Strong law of large numbers for weighted U-statistics: Application to incomplete U-statistics , 2012 .

[14]  Alexis Hannart,et al.  An Improved Bayesian Information Criterion for Multiple Change-Point Models , 2012, Technometrics.

[15]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[16]  Masashi Sugiyama,et al.  Sequential change‐point detection based on direct density‐ratio estimation , 2012, Stat. Anal. Data Min..

[17]  Z. Harchaoui,et al.  Kernel change-point detection , 2012 .

[18]  Olivier Capp'e,et al.  Homogeneity and change-point detection tests for multivariate data using rank statistics , 2011, 1107.1971.

[19]  Jean-Philippe Vert,et al.  The group fused Lasso for multiple change-point detection , 2011, 1106.4199.

[20]  Mathew W. McLean,et al.  Forecasting emergency medical service call arrival rates , 2011, 1107.4919.

[21]  P. Fearnhead,et al.  Optimal detection of changepoints with a linear computational cost , 2011, 1101.1438.

[22]  Maria L. Rizzo,et al.  DISCO analysis: A nonparametric extension of analysis of variance , 2010, 1011.2288.

[23]  Guillem Rigaill,et al.  Pruned dynamic programming for optimal multiple change-point detection , 2010 .

[24]  Caren Marzban,et al.  Using labeled data to evaluate change detectors in a multivariate streaming environment , 2009, Signal Process..

[25]  Sylvain Arlot,et al.  Segmentation of the mean of heteroscedastic data via cross-validation , 2009, Stat. Comput..

[26]  Pascal Massart,et al.  Data-driven Calibration of Penalties for Least-Squares Regression , 2008, J. Mach. Learn. Res..

[27]  Chandra Erdman,et al.  bcp: An R Package for Performing a Bayesian Analysis of Change Point Problems , 2007 .

[28]  O. Cappé,et al.  Retrospective Mutiple Change-Point Estimation with Kernels , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[29]  Qiang Zhang,et al.  Optimal rate of convergence for nonparametric change-point estimators for nonstationary sequences , 2007, 0710.4217.

[30]  David O Siegmund,et al.  A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data , 2007, Biometrics.

[31]  A. Gandy Sequential Implementation of Monte Carlo Tests With Uniformly Bounded Resampling Risk , 2006, math/0612488.

[32]  M. Lavielle,et al.  Detection of multiple change-points in multivariate time series , 2006 .

[33]  Richard A. Davis,et al.  Structural Break Estimation for Nonstationary Time Series Models , 2006 .

[34]  Gábor J. Székely,et al.  Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method , 2005, J. Classif..

[35]  Marc Lavielle,et al.  Using penalized contrasts for the change-point problem , 2005, Signal Process..

[36]  N. Hengartner,et al.  Structural learning with time‐varying components: tracking the cross‐section of financial time series , 2005 .

[37]  Vasilios A. Siris,et al.  Application of anomaly detection algorithms for detecting SYN flooding attacks , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[38]  M. Wigler,et al.  Circular binary segmentation for the analysis of array-based DNA copy number data. , 2004, Biostatistics.

[39]  Jean-Yves Pitarakis,et al.  Least Squares Estimation and Tests of Breaks in Mean and Variance Under Misspecification , 2004 .

[40]  Kurt Hornik,et al.  Testing and dating of structural changes in practice , 2003, Comput. Stat. Data Anal..

[41]  Jeffrey D. Scargle,et al.  An algorithm for optimal partitioning of data on an interval , 2003, IEEE Signal Processing Letters.

[42]  David J. Hand,et al.  Statistical fraud detection: A review , 2002 .

[43]  Mohammed J. Zaki,et al.  ADMIT: anomaly-based data mining for intrusions , 2002, KDD.

[44]  E. Ghysels,et al.  Detecting Multiple Breaks in Financial Market Volatility Dynamics , 2002 .

[45]  Xiaotong Shen,et al.  Adaptive Model Selection , 2002 .

[46]  Achim Zeileis,et al.  Strucchange: An R package for testing for structural change in linear regression models , 2002 .

[47]  D. Hawkins Fitting multiple change-point models to data , 2001 .

[48]  Paul Embrechts,et al.  Change-Point Analysis for Dependence Structures in Finance and Insurance , 2001 .

[49]  Arjun K. Gupta,et al.  Parametric Statistical Change Point Analysis , 2000 .

[50]  Jaideep Srivastava,et al.  Event detection from time series data , 1999, KDD '99.

[51]  Tom Fawcett,et al.  Adaptive Fraud Detection , 1997, Data Mining and Knowledge Discovery.

[52]  P. Friedman,et al.  A change point detection method for elimination of industrial interference in radio astronomy receivers , 1996, Proceedings of 8th Workshop on Statistical Signal and Array Processing.

[53]  Terence Tai Leung Chong,et al.  Partial parameter consistency in a misspecified structural change model , 1995 .

[54]  Richard A. Redner,et al.  Asymptotic Distributions of Weighted $U$-Statistics of Degree 2 , 1993 .

[55]  B. Brodsky,et al.  Nonparametric Methods in Change Point Problems , 1993 .

[56]  Adrian F. M. Smith,et al.  Hierarchical Bayesian Analysis of Changepoint Problems , 1992 .

[57]  David A. Hsieh,et al.  The statistical properties of daily foreign exchange rates: 1974–1983 , 1988 .

[58]  Yi-Ching Yao Estimating the number of change-points via Schwarz' criterion , 1988 .

[59]  Alan Agresti,et al.  The Measurement of Classification Agreement: An Adjustment to the Rand Statistic for Chance Agreement , 1984 .

[60]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[61]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[62]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Robert J. Piechocki,et al.  Non-Parametric Change-Point Estimation using String Matching Algorithms , 2011, Methodology and Computing in Applied Probability.

[64]  Vito M. R. Muggeo,et al.  Efficient change point detection for genomic sequences of continuous measurements , 2011, Bioinform..

[65]  Jilles Vreeken,et al.  Summarizing categorical data by clustering attributes , 2011, Data Mining and Knowledge Discovery.

[66]  C. Faloutsos,et al.  EVENT DETECTION IN TIME SERIES OF MOBILE COMMUNICATION GRAPHS , 2010 .

[67]  D. Guégan,et al.  Change analysis of dynamic copula for measuring dependence in multivariate financial data , 2010 .

[68]  Alexander G. Tartakovsky,et al.  A novel approach to detection of \denial{of{service" attacks via adaptive sequential and batch{sequential change{point detection methods , 2001 .

[69]  David Hsieh Testing for Nonlinear Dependence in Daily Foreign Exchange Rates , 1989 .

[70]  L. Hubert,et al.  Comparing partitions , 1985 .

[71]  W. Hoeffding The strong law of large numbers for u-statistics. , 1961 .

[72]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[73]  Xiaogang Wang,et al.  Clues: an R Package for Nonparametric Clustering Based on Local Shrinking , 2022 .