Astrophysical jets from boosted compact objects

We perform full 3D numerical simulations of compact objects, such as black holes or neutron stars, boosted through an ambient forcefree plasma that posses a uniform magnetization. We study jet formation and energy extraction from the resulting stationary late time solutions. The implementation of appropriate boundary conditions has allowed us to explore a wide range of boost velocities, finding the jet power scales as $\ensuremath{\gamma}{v}^{2}$ (being $\ensuremath{\gamma}$ the Lorentz factor). We also explore other parameters of the problem like the orientation of the motion respect to the asymptotic magnetic field or the inclusion of black hole spin. Additionally, by comparing a black hole with a perfectly conducting sphere in flat spacetime, we manage to disentangle curvature effects from those produced by the perfect conducting surface. It is shown that when the stellar compactness is increased these two effects act in combination, further enhancing the luminosity produced by the neutron star.

[1]  M. Lyutikov Electrodynamics of binary neutron star mergers , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  Oscar A. Reula,et al.  Pulsar magnetospheres in general relativity , 2018, Physical Review D.

[3]  Oscar A. Reula,et al.  Novel scheme for simulating the force-free equations: Boundary conditions and the evolution of solutions towards stationarity , 2017, 1703.10241.

[4]  S. Gralla,et al.  Plasma Waves and Jets from Moving Conductors , 2016, 1603.09693.

[5]  Oscar A. Reula,et al.  Covariant hyperbolization of force-free electrodynamics , 2016, 1602.01853.

[6]  S. Gralla,et al.  Electromagnetic Jets from Stars and Black Holes , 2015, 1504.02113.

[7]  R. Penna Energy extraction from boosted black holes: Penrose process, jets, and the membrane at infinity , 2015, 1503.00728.

[8]  S. McWilliams,et al.  Stability of exact force-free electrodynamic solutions and scattering from spacetime curvature , 2015, 1501.05394.

[9]  C. Palenzuela,et al.  Interaction of misaligned magnetospheres in the coalescence of binary neutron stars , 2014, 1404.0692.

[10]  T. Jacobson,et al.  Spacetime approach to force-free magnetospheres , 2014, 1401.6159.

[11]  A. Tchekhovskoy,et al.  Extracting black-hole rotational energy: The generalized Penrose process , 2013, 1310.7499.

[12]  L. Rezzolla,et al.  Nonsingular electrodynamics of a rotating black hole moving in an asymptotically uniform magnetic test field , 2013, 1310.3575.

[13]  H. Pfeiffer,et al.  Hyperbolicity of Force-Free Electrodynamics , 2013, 1307.7782.

[14]  C. Palenzuela,et al.  Linking electromagnetic and gravitational radiation in coalescing binary neutron stars , 2013, 1307.7372.

[15]  Z. Etienne,et al.  General relativistic simulations of binary black hole-neutron stars: Precursor electromagnetic signals , 2013, 1304.1805.

[16]  C. Palenzuela,et al.  Electromagnetic and gravitational outputs from binary-neutron-star coalescence. , 2013, Physical review letters.

[17]  L. Rezzolla,et al.  ACCURATE SIMULATIONS OF BINARY BLACK HOLE MERGERS IN FORCE-FREE ELECTRODYNAMICS , 2012, The Astrophysical Journal.

[18]  L. Hui,et al.  Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres , 2011, 1110.6669.

[19]  S. McWilliams,et al.  ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE–NEUTRON-STAR BINARIES , 2011, 1101.1969.

[20]  M. Lyutikov Schwarzschild black holes as unipolar inductors: expected electromagnetic power of a merger , 2011, 1101.0639.

[21]  C. Palenzuela,et al.  Boosting jet power in black hole spacetimes , 2010, Proceedings of the National Academy of Sciences.

[22]  C. Palenzuela,et al.  Magnetospheres of black hole systems in force-free plasma , 2010, 1007.1198.

[23]  C. Palenzuela,et al.  Dual Jets from Binary Black Holes , 2010, Science.

[24]  Mariana Cécere,et al.  Constraint preserving boundary conditions for the Ideal Newtonian MHD equations , 2008, Comput. Phys. Commun..

[25]  M. Visser The Kerr spacetime: A brief introduction , 2007, 0706.0622.

[26]  A. Spitkovsky Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.

[27]  J. McKinney Relativistic force-free electrodynamic simulations of neutron star magnetospheres , 2006, astro-ph/0601411.

[28]  Erik Schnetter,et al.  Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions , 2005, J. Sci. Comput..

[29]  A. Timokhin,et al.  On the force‐free magnetosphere of an aligned rotator , 2005, astro-ph/0511817.

[30]  Oscar Reula,et al.  Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.

[31]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.

[32]  S. S. Komissarov,et al.  Electrodynamics of black hole magnetospheres , 2004, astro-ph/0402403.

[33]  Oscar Reula,et al.  Summation by parts and dissipation for domains with excised regions , 2003, gr-qc/0308007.

[34]  M. Carpenter,et al.  High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates , 2001 .

[35]  S. Shibata Pulsar Electrodynamics , 1999, astro-ph/9912514.

[36]  C. Fendt,et al.  The Axisymmetric Pulsar Magnetosphere , 1999, astro-ph/9903049.

[37]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[38]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[39]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[40]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[41]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[42]  S. D. Drell,et al.  Drag and propulsion of large satellites in the ionosphere: An Alfvén propulsion engine in space , 1965 .

[43]  Michael Faraday,et al.  VI. The Bakerian lecture. - Experimental researches in electricity. - Second series , 1832, Philosophical Transactions of the Royal Society of London.