Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches.

With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.

[1]  Jacob D. Jaffe,et al.  The complete genome and proteome of Mycoplasma mobile. , 2004, Genome research.

[2]  Jörg Bernhardt,et al.  Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. , 2003, Genome research.

[3]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[4]  P. Fawcett,et al.  The Global Transcriptional Response of Bacillus subtilis to Peroxide Stress Is Coordinated by Three Transcription Factors , 2003, Journal of bacteriology.

[5]  M. Karas,et al.  Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. , 1988, Analytical chemistry.

[6]  J. Bernhardt,et al.  Using standard positions and image fusion to create proteome maps from collections of two‐dimensional gel electrophoresis images , 2003, Proteomics.

[7]  J. V. van Dijl,et al.  Proteomics‐based consensus prediction of protein retention in a bacterial membrane , 2005, Proteomics.

[8]  P. Højrup,et al.  Rapid identification of proteins by peptide-mass fingerprinting , 1993, Current Biology.

[9]  J. Ghuysen,et al.  Binding site‐shaped repeated sequences of bacterial wall peptidoglycan hydrolases , 1994, FEBS letters.

[10]  J. Bernhardt,et al.  First steps from a two‐dimensional protein index towards a response‐regulation map for Bacillus subtilis , 1997, Electrophoresis.

[11]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[12]  Patrick Eichenberger,et al.  Genome-Wide Analysis of the Stationary-Phase Sigma Factor (Sigma-H) Regulon of Bacillus subtilis , 2002, Journal of bacteriology.

[13]  J. Yates,et al.  An automated multidimensional protein identification technology for shotgun proteomics. , 2001, Analytical chemistry.

[14]  Uwe Völker,et al.  A comprehensive proteome map of growing Bacillus subtilis cells , 2004, Proteomics.

[15]  M. Hecker,et al.  Role of the Fur Regulon in Iron Transport in Bacillus subtilis , 2006, Journal of bacteriology.

[16]  J. Alonso,et al.  Bacillus subtilis homologous recombination: genes and products. , 2000, Research in microbiology.

[17]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[18]  Ronald J Moore,et al.  Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Aymerich,et al.  CcpN (YqzB), a novel regulator for CcpA‐independent catabolite repression of Bacillus subtilis gluconeogenic genes , 2005, Molecular microbiology.

[20]  A. Görg,et al.  Two‐dimensional electrophoresis of proteins in an immobilized pH 4–12 gradient , 1998, Electrophoresis.

[21]  K. Yamane,et al.  Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. , 2000, Microbiology.

[22]  J. Bernhardt,et al.  Specific and general stress proteins in Bacillus subtilis--a two-deimensional protein electrophoresis study. , 1997, Microbiology.

[23]  Michael Hecker,et al.  Phosphate Starvation-Inducible Proteins ofBacillus subtilis: Proteomics and Transcriptional Analysis , 2000, Journal of bacteriology.

[24]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[25]  D. Oesterhelt,et al.  Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation , 2005, Proteomics.

[26]  M. Hecker,et al.  Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. , 2004, Microbiology.

[27]  J. Bernhardt,et al.  A comprehensive two‐dimensional map of cytosolic proteins of Bacillus subtilis , 2001, Electrophoresis.

[28]  M. Hecker,et al.  Heat-shock proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study , 1986 .

[29]  J. Bernhardt,et al.  Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis. , 1997, Microbiology.

[30]  P. Model,et al.  Cell wall sorting signals in surface proteins of gram‐positive bacteria. , 1993, The EMBO journal.

[31]  M. Arnaud,et al.  Role of BkdR, a Transcriptional Activator of the SigL-Dependent Isoleucine and Valine Degradation Pathway inBacillus subtilis , 1999, Journal of bacteriology.

[32]  D. Hochstrasser,et al.  Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. , 1996, Biotechnology & genetic engineering reviews.

[33]  Oscar P. Kuipers,et al.  Proteomics of Protein Secretion by Bacillus subtilis: Separating the “Secrets” of the Secretome , 2004, Microbiology and Molecular Biology Reviews.

[34]  A. Wipat,et al.  Genome-Wide Transcriptional Analysis of the Phosphate Starvation Stimulon of Bacillus subtilis , 2005, Journal of bacteriology.

[35]  S. Fisher,et al.  Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! , 1999, Molecular microbiology.

[36]  A. Görg,et al.  Very alkaline immobilized pH gradients for two‐dimensional electrophoresis of ribosomal and nuclear proteins , 1997, Electrophoresis.

[37]  M. Hecker,et al.  Alkaline proteins of Bacillus subtilis: First steps towards a two‐dimensional alkaline master gel , 2000, Electrophoresis.

[38]  M. Sarvas,et al.  Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the lgt gene , 1999, Molecular microbiology.

[39]  Uwe Völker,et al.  Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics , 2004, Proteomics.

[40]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[41]  R. Henderson,et al.  Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. , 1992, Science.

[42]  J. Klose Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues , 1975, Humangenetik.

[43]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[44]  M. Hecker,et al.  General stress response of Bacillus subtilis and other bacteria. , 2001, Advances in microbial physiology.

[45]  R. Losick,et al.  Additional Targets of the Bacillus subtilis Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis , 2003, Journal of bacteriology.

[46]  G. Gonnet,et al.  Protein identification by mass profile fingerprinting. , 1993, Biochemical and biophysical research communications.

[47]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[48]  Jörg Stülke,et al.  Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. , 2003, Metabolic engineering.

[49]  H. Zischka,et al.  The membrane proteome of Halobacterium salinarum , 2005, Proteomics.

[50]  M. Hecker,et al.  Phosphate-starvation-inducible proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. , 1996, Microbiology.

[51]  Paul Gollnick,et al.  Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. , 2005, Annual review of genetics.

[52]  S. H. Kaufmann,et al.  Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens , 1999, Molecular microbiology.

[53]  Paul Gollnick,et al.  Posttranscription Initiation Control of Tryptophan Metabolism in Bacillus subtilis by thetrp RNA-Binding Attenuation Protein (TRAP), anti-TRAP, and RNA Structure , 2001, Journal of bacteriology.

[54]  A Sette,et al.  Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. , 1992, Science.

[55]  K. Kobayashi,et al.  Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. , 2001, Nucleic acids research.

[56]  Y. Fujita,et al.  Identification of additional TnrA‐regulated genes of Bacillus subtilis associated with a TnrA box , 2003, Molecular microbiology.

[57]  M. Hecker,et al.  Non‐specific, general and multiple stress resistance of growth‐restricted Bacillus subtilis cells by the expression of the σB regulon , 1998, Molecular microbiology.

[58]  R. Henderson,et al.  HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. , 1992, Science.

[59]  C. Gray,et al.  Two‐dimensional map of the proteome of Haemophilus influenzae , 2000, Electrophoresis.

[60]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[61]  Peter Zuber,et al.  Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  L. Wray,et al.  TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[64]  C. Price,et al.  General Stress Transcription Factor ςB and Sporulation Transcription Factor ςH Each Contribute to Survival of Bacillus subtilis under Extreme Growth Conditions , 1998, Journal of bacteriology.

[65]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[66]  U. N. Streips,et al.  Heat shock proteins in bacilli , 1985, Journal of bacteriology.

[67]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[68]  Jörg Bernhardt,et al.  Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2‐D gel image color coding approach , 2006, Proteomics.

[69]  F M Hulett,et al.  The signal‐transduction network for Pho regulation in Bacillus subtilis , 1996, Molecular microbiology.

[70]  Hiroyuki Kaji,et al.  Only a Small Subset of the Horizontally Transferred Chromosomal Genes in Escherichia coli Are Translated into Proteins*S , 2004, Molecular & Cellular Proteomics.

[71]  F. Neidhardt,et al.  Diagnosis of cellular states of microbial organisms using proteomics , 1999, Electrophoresis.

[72]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[73]  T. Hunkapiller,et al.  Peptide mass maps: a highly informative approach to protein identification. , 1993, Analytical biochemistry.

[74]  K. Bunai,et al.  Profiling and comprehensive expression analysis of ABC transporter solute‐binding proteins of Bacillus subtilis membrane based on a proteomic approach , 2004, Electrophoresis.

[75]  P. Højrup,et al.  Use of mass spectrometric molecular weight information to identify proteins in sequence databases. , 1993, Biological mass spectrometry.

[76]  M. Molloy,et al.  Membrane proteins and proteomics: Un amour impossible? , 2000, Electrophoresis.

[77]  Jörg Bernhardt,et al.  Salt stress adaptation of Bacillus subtilis: A physiological proteomics approach , 2006, Proteomics.

[78]  Jörg Bernhardt,et al.  Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells , 2005, Molecular Genetics and Genomics.

[79]  M. Hecker,et al.  Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. , 2002, Journal of biotechnology.

[80]  M. Hecker,et al.  Stabilization of cell wall proteins in Bacillus subtilis: A proteomic approach , 2002, Proteomics.

[81]  Jan Maarten van Dijl,et al.  A proteomic view on genome-based signal peptide predictions. , 2001, Genome research.

[82]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[83]  C. Watanabe,et al.  Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.