Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems

For any function f from $\mathbb R$ to $\mathbb R$, one can define a corresponding function on the space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the spectral decomposition. We show that this matrix-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Frechet differentiability, continuous differentiability, as well as ($\rho$-order) semismoothness. Our analysis uses results from nonsmooth analysis as well as perturbation theory for the spectral decomposition of symmetric matrices. We also apply our results to the semidefinite complementarity problem, addressing some basic issues in the analysis of smoothing/semismooth Newton methods for solving this problem.

[1]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[2]  Paul Tseng,et al.  Merit functions for semi-definite complemetarity problems , 1998, Math. Program..

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Box-Constrained Variational Inequalities , 1999 .

[5]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[6]  P. Tseng Analysis Of A Non-Interior Continuation Method Based On Chen-Mangasarian Smoothing Functions For Com , 1998 .

[7]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[8]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[9]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..

[10]  M. Fukushima,et al.  A New Merit Function and a Descent Method for Semidefinite Complementarity Problems , 1998 .

[11]  Xiaojun Chen,et al.  A Global and Local Superlinear Continuation-Smoothing Method for P0 and R0 NCP or Monotone NCP , 1999, SIAM J. Optim..

[12]  Tosio Kato Perturbation theory for linear operators , 1966 .

[13]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[14]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[15]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[16]  Christian Kanzow,et al.  Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2002, SIAM J. Optim..

[17]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[18]  Houduo Qi,et al.  A Regularized Smoothing Newton Method for Box Constrained Variational Inequality Problems with P0-Functions , 1999, SIAM J. Optim..

[19]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[20]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[21]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[22]  Houyuan Jiang,et al.  Global and Local Superlinear Convergence Analysis of Newton-Type Methods for Semismooth Equations with Smooth Least Squares , 1998 .

[23]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[24]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[25]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[26]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[27]  Adrian S. Lewis,et al.  Twice Differentiable Spectral Functions , 2001, SIAM J. Matrix Anal. Appl..

[28]  Christian Kanzow,et al.  Jacobian Smoothing Methods for Nonlinear Complementarity Problems , 1999, SIAM J. Optim..