Multi-window Gabor frames in amalgam spaces

We show that multi-window Gabor frames with windows in the Wiener algebra $W(L^{\infty}, \ell^{1})$ are Banach frames for all Wiener amalgam spaces. As a byproduct of our results we positively answer an open question that was posed by [Krishtal and Okoudjou, Invertibility of the Gabor frame operator on the Wiener amalgam space, J. Approx. Theory, 153(2), 2008] and concerns the continuity of the canonical dual of a Gabor frame with a continuous generator in the Wiener algebra. The proofs are based on a recent version of Wiener's $1/f$ lemma.

[1]  I. Daubechies,et al.  Optimal Stochastic Encoding and Approximation Schemes using Weyl—Heisenberg Sets , 2003 .

[2]  H. Feichtinger,et al.  Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .

[3]  R. Balan,et al.  An almost periodic noncommutative Wiener's Lemma , 2010 .

[4]  R. Balan The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators , 2008 .

[5]  D. Walnut Continuity properties of the Gabor frame operator , 1992 .

[6]  T. Strohmer Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.

[7]  Karlheinz Gr öchenig Localization of Frames , 2004 .

[8]  O. Norwood Density , 1993, International Society of Hair Restoration Surgery.

[9]  U. G. Kurbatov Functional Differential Operators and Equations , 1999 .

[10]  Kasso A. Okoudjou,et al.  Invertibility of the Gabor frame operator on the Wiener amalgam space , 2007, J. Approx. Theory.

[11]  A. Aldroubi,et al.  SLANTED MATRICES, BANACH FRAMES, AND SAMPLING , 2007, 0705.4304.

[12]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.

[13]  L. Grafakos,et al.  Characterization ofLp (Rn) using Gabor frames , 2001 .

[14]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[15]  L. Squire,et al.  Amalgams of Lᴾ and ℓ^q , 1984 .

[16]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. II. Gabor Systems , 2005 .

[17]  F. Weisz Pointwise Summability of Gabor Expansions , 2009 .

[18]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[19]  K. Gröchenig Gabor Analysis in Weighted Amalgam Spaces , 2002 .

[20]  Absteact haemonic analysis and asymptotic estimates of elements of inverse matrices , 1992 .

[21]  I. Krishtal Wiener’s Lemma and Memory Localization , 2011 .

[22]  Karlheinz Gröchenig,et al.  Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices , 2006 .

[23]  K. Gröchenig,et al.  Wiener's lemma for twisted convolution and Gabor frames , 2003 .

[24]  Harmonic analysis of causal operators and their spectral properties , 2005 .

[25]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[26]  K. Gröchenig,et al.  Gabor meets Littlewood-Paley: Gabor expansions in $L^{p}(ℝ^{d})$ , 2001 .

[27]  R. Balan,et al.  Density, overcompleteness, and localization of frames , 2006 .