Multi-window Gabor frames in amalgam spaces
暂无分享,去创建一个
Kasso A. Okoudjou | Ilya A. Krishtal | Radu Balan | Jos'e Luis Romero | R. Balan | J. Romero | K. Okoudjou | J. Christensen | I. Krishtal | Jens G. Christensen
[1] I. Daubechies,et al. Optimal Stochastic Encoding and Approximation Schemes using Weyl—Heisenberg Sets , 2003 .
[2] H. Feichtinger,et al. Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .
[3] R. Balan,et al. An almost periodic noncommutative Wiener's Lemma , 2010 .
[4] R. Balan. The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators , 2008 .
[5] D. Walnut. Continuity properties of the Gabor frame operator , 1992 .
[6] T. Strohmer. Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.
[7] Karlheinz Gr öchenig. Localization of Frames , 2004 .
[8] O. Norwood. Density , 1993, International Society of Hair Restoration Surgery.
[9] U. G. Kurbatov. Functional Differential Operators and Equations , 1999 .
[10] Kasso A. Okoudjou,et al. Invertibility of the Gabor frame operator on the Wiener amalgam space , 2007, J. Approx. Theory.
[11] A. Aldroubi,et al. SLANTED MATRICES, BANACH FRAMES, AND SAMPLING , 2007, 0705.4304.
[12] R. Balan,et al. Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.
[13] L. Grafakos,et al. Characterization ofLp (Rn) using Gabor frames , 2001 .
[14] K. Gröchenig. Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .
[15] L. Squire,et al. Amalgams of Lᴾ and ℓ^q , 1984 .
[16] R. Balan,et al. Density, Overcompleteness, and Localization of Frames. II. Gabor Systems , 2005 .
[17] F. Weisz. Pointwise Summability of Gabor Expansions , 2009 .
[18] A. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .
[19] K. Gröchenig. Gabor Analysis in Weighted Amalgam Spaces , 2002 .
[20] Absteact haemonic analysis and asymptotic estimates of elements of inverse matrices , 1992 .
[21] I. Krishtal. Wiener’s Lemma and Memory Localization , 2011 .
[22] Karlheinz Gröchenig,et al. Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices , 2006 .
[23] K. Gröchenig,et al. Wiener's lemma for twisted convolution and Gabor frames , 2003 .
[24] Harmonic analysis of causal operators and their spectral properties , 2005 .
[25] Deguang Han,et al. Frames, bases, and group representations , 2000 .
[26] K. Gröchenig,et al. Gabor meets Littlewood-Paley: Gabor expansions in $L^{p}(ℝ^{d})$ , 2001 .
[27] R. Balan,et al. Density, overcompleteness, and localization of frames , 2006 .