A Note on the Continuity of Free-Boundaries in Finite-Horizon Optimal Stopping Problems for One-Dimensional Diffusions

We provide sufficient conditions for the continuity of the free-boundary in a general class of finite-horizon optimal stopping problems arising, for instance, in finance and economics. The underlying process is a strong solution of a one-dimensional, time-homogeneous stochastic differential equation (SDE). The proof relies on both analytic and probabilistic arguments and is based on a contradiction scheme inspired by the maximum principle in partial differential equations theory. Mild, local regularity of the coefficients of the SDE and smoothness of the gain function locally at the boundary are required.

[1]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[2]  P. Moerbeke On optimal stopping and free boundary problems , 1973, Advances in Applied Probability.

[3]  Daniel B. Kotlow A free boundary problem connected with the optimal stopping problem for diffusion processes , 1973 .

[4]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[5]  Goran Peskir,et al.  Embedding laws in diffusions by functions of time , 2012, 1201.5321.

[6]  P. Carr,et al.  ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS , 1992 .

[7]  Erik Ekström Convexity of the optimal stopping boundary for the American put option , 2004 .

[8]  Alain Bensoussan,et al.  Applications of Variational Inequalities in Stochastic Control , 1982 .

[9]  S. Salsa,et al.  Regularity of the free boundary of an American option on several assets , 2009 .

[10]  G. Peskir,et al.  On Asian Options of American Type , 2005 .

[11]  R. Myneni The Pricing of the American Option , 1992 .

[12]  J. Cannon,et al.  On the infinite differentiability of the free boundary in a Stefan problem , 1968 .

[13]  Avner Friedman,et al.  Parabolic variational inequalities in one space dimension and smoothness of the free boundary , 1975 .

[14]  G. Ferrari,et al.  A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis , 2013 .

[15]  J R Lynn,et al.  Finite-horizon optimal stopping, obstacle problems and the shape of the continuation region , 1992 .

[16]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[17]  Xinfu Chen,et al.  CONVEXITY OF THE EXERCISE BOUNDARY OF THE AMERICAN PUT OPTION ON A ZERO DIVIDEND ASSET , 2007 .

[18]  Adrien Blanchet,et al.  On the regularity of the free boundary in the parabolic obstacle problem. Application to American options , 2006 .

[19]  S. Yung,et al.  GAME CALL OPTIONS REVISITED , 2014 .

[20]  Albert N. Shiryaev,et al.  Optimal Stopping Rules , 2011, International Encyclopedia of Statistical Science.

[21]  Wim Schoutens,et al.  Exotic Option Pricing and Advanced Lévy Models , 2005 .

[22]  H. P. Jr. Mackean,et al.  Appendix : A free boundary problem for the heat equation arising from a problem in mathematical economics , 1965 .

[23]  S. Jacka Optimal Stopping and the American Put , 1991 .

[24]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[25]  G. Peskir ON THE AMERICAN OPTION PROBLEM , 2005 .

[26]  T. McConnell The two-sided stefan problem with a spatially dependent latent heat , 1991 .

[27]  I. Kim The Analytic Valuation of American Options , 1990 .

[28]  David G Schaeffer,et al.  A new proof of the infinite differentiability of the free boundary in the Stefan problem , 1976 .

[29]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .

[30]  Avner Friedman,et al.  Regularity theorems for variational inequalities in unbounded domains and applications to stopping time problems , 1973 .

[31]  G. Peskir,et al.  A Change-of-Variable Formula with Local Time on Surfaces , 2004 .

[32]  G. Peskir,et al.  The trap of complacency in predicting the maximum. , 2007, math/0703805.

[33]  V. Borkar Controlled diffusion processes , 2005, math/0511077.

[34]  G. Peskir A Change-of-Variable Formula with Local Time on Curves , 2005 .

[35]  Xinfu Chen,et al.  A Mathematical Analysis of the Optimal Exercise Boundary for American Put Options , 2007, SIAM J. Math. Anal..

[36]  Ulrich G. Haussmann,et al.  On a Stochastic, Irreversible Investment Problem , 2009, SIAM J. Control. Optim..

[37]  Avner Friedman,et al.  Nonzero-sum stochastic differential games with stopping times and free boundary problems , 1977 .

[38]  Lukasz Stettner,et al.  Finite Horizon Optimal Stopping of Time-Discontinuous Functionals with Applications to Impulse Control with Delay , 2010, SIAM J. Control. Optim..