Global sensitivity analysis for the Rothermel model based on high-dimensional model representation

Rothermel’s wildland surface fire spread model is widely used in North America. The model outputs depend on a number of input parameters, which can be broadly categorized as fuel model, fuel moisture, terrain, and wind parameters. Due to the inevitable presence of uncertainty in the input parameters, knowing the sensitivity of the model output to a given input parameter can be very useful for understanding and controlling the sources of parametric uncertainty. Instead of obtaining the local sensitivity indices, we perform a global sensitivity analysis that considers the synchronous changes of parameters in their respective ranges. The global sensitivity indices corresponding to different parameter groups are computed by constructing the truncated ANOVA – high dimensional model representation for the model outputs with a polynomial expansion approach. We apply global sensitivity analysis to six standard fuel models, namely short grass, tall grass, chaparral, hardwood litter, timber, and light logging slash...

[1]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[2]  Ralph A. Wilson Reexamination of Rothermel's Fire Spread Equations in No-Wind and No-Slope Conditions , 2017 .

[3]  Philip N. Omi,et al.  Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests , 2002 .

[4]  M. Yousuff Hussaini,et al.  Parametric uncertainty quantification in the Rothermel model with randomised quasi-Monte Carlo methods , 2015 .

[5]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[6]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[7]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[8]  Josep Piñol,et al.  Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands , 2001 .

[9]  David V. Sandberg,et al.  Reformulation of Rothermel's wildland fire behaviour model for heterogeneous fuelbeds. , 2007 .

[10]  T. Clark,et al.  Description of a coupled atmosphere–fire model , 2004 .

[11]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[12]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[13]  F. Albini Wildland Fire Spread by Radiation-a Model Including Fuel Cooling by Natural Convection , 1986 .

[14]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[15]  H. Anderson Aids to Determining Fuel Models for Estimating Fire Behavior , 1982 .

[16]  Wr Catchpole,et al.  Modelling Moisture Damping for Fire Spread in a Mixture of Live and Dead Fuels , 1991 .

[17]  Judith Winterkamp,et al.  Studying wildfire behavior using FIRETEC , 2002 .

[18]  R. Rothermel A Mathematical Model for Predicting Fire Spread in Wildland Fuels , 2017 .

[19]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[20]  Patricia L. Andrews,et al.  BehavePlus fire modeling system: Past, present, and future , 2007 .

[21]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[22]  F. Albini Estimating Wildfire Behavior and Effects , 1976 .

[23]  Yaning Liu,et al.  Accurate construction of high dimensional model representation with applications to uncertainty quantification , 2016, Reliab. Eng. Syst. Saf..

[24]  M. Yousuff Hussaini,et al.  Quantifying parametric uncertainty in the Rothermel model , 2008 .

[25]  Giray Ökten,et al.  Generalized von Neumann-Kakutani transformation and random-start scrambled Halton sequences , 2009, J. Complex..

[26]  Scott L. Goodrick,et al.  Uncertainty quantification in Rothermel's Model using an efficient sampling method , 2007 .

[27]  X. Lee,et al.  Introduction to wildland fire , 1997 .