Q2237+0305 in X-rays: spectra and variability with XMM-Newton

Aims. X-ray observations of gravitationally lensed quasars may allow us to probe the inner structure of the central engine of a quasar. Observations of Q2237+0305 (Einstein Cross) in X-rays may be used to constrain the inner structure of the X-ray emitting source. Methods. Here we analyze the XMM-Newton observation of the quasar in the gravitational lens system Q2237+0305 taken during 2002. Combined spectra of the four images of the quasar in this system were extracted and modelled with a power-law model. Statistical analysis was used to test the variability of the total flux. Results. The total X-ray flux from all the images of this quadruple gravitational lens system is 6 × 10 −13 erg/(cm 2 s) in the range 0.2–10 keV, showing no significant X-ray spectral variability during almost 42 ks of the observation time. Fitting of the cleaned source spectrum yields a photon power-law index of Γ= 1.82 +0.07 −0.08 . The X-ray lightcurves obtained after background subtraction are compatible with the hypothesis of a stationary flux from the source.

[1]  J. N. Reeves,et al.  An XMM–Newton survey of broad iron lines in Seyfert galaxies , 2007, 0708.1305.

[2]  L. Popović,et al.  Amplification and variability of the AGN X‐ray emission due to microlensing , 2006, astro-ph/0611016.

[3]  P. Jakobsson,et al.  Microlensing variability in time-delay quasars , 2006, astro-ph/0607133.

[4]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[5]  Cambridge,et al.  Observational determination of the time delays in gravitational lens system Q2237+0305 , 2005, astro-ph/0509545.

[6]  A. Rosa,et al.  INTEGRAL observations of six AGN in the Galactic Plane , 2005, astro-ph/0509123.

[7]  J. Surdej,et al.  Accurate photometric light curves of the lensed components of Q2237+0305 derived with an optimal image subtraction technique: Evidence for microlensing in image A , 2005 .

[8]  M. Bottorff,et al.  Complex X-Ray Absorption and the Fe Kα Profile in NGC 3516 , 2005 .

[9]  D. Porquet,et al.  An Extreme, Blueshifted Iron-Line Profile in the Narrow-Line Seyfert 1 PG 1402+261: An Edge-on Accretion Disk or Highly Ionized Absorption? , 2004, astro-ph/0408403.

[10]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[11]  L. M. A a , 2004 .

[12]  R. Schild,et al.  Microlensing of a Ring Model for Quasar Structure , 2003, astro-ph/0303356.

[13]  R. Schild,et al.  A Rapid Microlensing Event in the Q0957+561A, B Gravitational Lens System , 2003, astro-ph/0303170.

[14]  E. Agol,et al.  Accepted by ApJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 CHANDRA OBSERVATIONS OF QSO 2237+0305 , 2000 .

[15]  P. Schechter,et al.  Microlensing of Relativistic Knots in the Quasar HE 1104–1805 AB , 2002, astro-ph/0206263.

[16]  E. Mediavilla,et al.  The Nature and Size of the Optical Continuum Source in QSO 2237+0305 , 2002, astro-ph/0207236.

[17]  Cambridge,et al.  Optical monitoring of the gravitationally lensed quasar Q2237+0305 from APO between June 1995 and January 1998 , 2002, astro-ph/0207117.

[18]  A. Loeb,et al.  Measuring the Size of Quasar Broad-Line Clouds through Time-Delay Light-Curve Anomalies of Gravitational Lenses , 2002, astro-ph/0204529.

[19]  B. McLeod,et al.  QSO 2237+0305 VR Light Curves from Gravitational LensES International Time Project Optical Monitoring , 2002, astro-ph/0204426.

[20]  Leicester,et al.  High-resolution X-ray imaging and spectroscopy of the core of NGC 4945 with XMM-Newton and Chandra , 2002, astro-ph/0204361.

[21]  E. Turner,et al.  Determining the microlens mass function from quasar microlensing statistics , 2000, astro-ph/0008008.

[22]  C. Alard,et al.  The Optical Gravitational Lensing Experiment Monitoring of QSO 2237+0305 , 1999, astro-ph/9904329.

[23]  R. Doyon,et al.  Near-Infrared Imaging Spectrophotometry of the Gravitational Mirage Q2237+0305 , 1999 .

[24]  M. Blanton,et al.  Ultraviolet images of the gravitationally lensed quadruple quasar Q2237+0305 with the HST WFPC2 , 1998, astro-ph/9805359.

[25]  G. Lewis,et al.  Weighing a galaxy bar in the lens Q2237+=0305 , 1997, astro-ph/9708170.

[26]  B. Artamonov,et al.  VRI photometry of the Einstein Cross Q2237+0305 at Maidanak observatory , 1997 .

[27]  J. Lehár,et al.  VLA Observations of the Gravitational Lens System Q2237+0305 , 1996 .

[28]  A. Zdziarski,et al.  Angle-dependent Compton reflection of X-rays and gamma-rays , 1995 .

[29]  J. Wambsganss,et al.  Parameter degeneracy in models of the quadruple lens system Q2237+0305 , 1994, astro-ph/9408084.

[30]  D. Schneider,et al.  Hubble Space Telescope Wide Field Camera Imaging of the Gravitational Lens 2237+0305 , 1992 .

[31]  S. Chandrasekhar The mathematical theory of black holes and of colliding plane waves , 1991 .

[32]  A. Laor Line Profiles from a Disk around a Rotating Black Hole , 1991 .

[33]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[34]  Edwin L. Turner,et al.  High-resolution CCD imaging and derived gravitational lens models of 2237+0305 , 1988 .

[35]  John P. Huchra,et al.  2237 + 0305 - a new and unusual gravitational lens , 1985 .

[36]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[37]  C. Alcock Gravitational lenses , 1982, Nature.