Characterization of Xanthomonas citri pv. citri from China based on spoligotyping

[1]  Ling Wang,et al.  Characterization of type I-F CRISPR-Cas system in Laribacter hongkongensis isolates from animals, the environment and diarrhea patients. , 2021, International journal of food microbiology.

[2]  S. Wai,et al.  CRISPR-based subtyping to track the evolutionary history of a global clone of Acinetobacter baumannii. , 2021, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[3]  Long Qin,et al.  Bioinformatics Analysis of MAPK Genes in Citrus and Their Expression in Response to Canker Disease , 2020 .

[4]  Zhang Qingwen,et al.  Interacting Protein Screening and Analysis of CsAP2-09 — A Citrus Bacterial Canker Related Transcription Factor , 2020 .

[5]  R. Koebnik,et al.  CRISPR elements provide a new framework for the genealogy of the citrus canker pathogen Xanthomonas citri pv. citri , 2019, BMC Genomics.

[6]  T. H. Smits,et al.  Genome-based population structure analysis of the strawberry plant pathogen Xanthomonas fragariae reveals two distinct groups that evolved independently before its species description , 2018, Microbial genomics.

[7]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[8]  V. Barbe,et al.  Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges , 2015, BMC Genomics.

[9]  D. Tuğcu,et al.  Successful treatment of multiresistant Achromobacter xylosoxidans bacteremia in a child with acute myeloid leukemia , 2015, Annals of Saudi medicine.

[10]  J. Oost,et al.  Unravelling the structural and mechanistic basis of CRISPR–Cas systems , 2014, Nature Reviews Microbiology.

[11]  R. Koebnik,et al.  A MLVA Genotyping Scheme for Global Surveillance of the Citrus Pathogen Xanthomonas citri pv. citri Suggests a Worldwide Geographical Expansion of a Single Genetic Lineage , 2014, PloS one.

[12]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[13]  Takashi Yamada,et al.  Characterization of Bacteriophages Cp1 and Cp2, the Strain-Typing Agents for Xanthomonas axonopodis pv. citri , 2013, Applied and Environmental Microbiology.

[14]  Chris M. Brown,et al.  CRISPRTarget , 2013, RNA Biology.

[15]  Lothar Beutin,et al.  Use of Clustered Regularly Interspaced Short Palindromic Repeat Sequence Polymorphisms for Specific Detection of Enterohemorrhagic Escherichia coli Strains of Serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by Real-Time PCR , 2012, Journal of Clinical Microbiology.

[16]  Hongwei Wang,et al.  Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. , 2012, Structure.

[17]  F. Weill,et al.  CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections , 2012, PloS one.

[18]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[19]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[20]  T. H. Smits,et al.  Diversity, Evolution, and Functionality of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Regions in the Fire Blight Pathogen Erwinia amylovora , 2011, Applied and Environmental Microbiology.

[21]  J. Swings,et al.  Genetic Diversity and Pathogenicity of Xanthomonas axonopodis Strains Inducing Citrus Canker Disease in Iran and South Korea , 2011, Indian Journal of Microbiology.

[22]  Andrew Emili,et al.  A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair , 2011, Molecular microbiology.

[23]  K. Severinov,et al.  Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. , 2009, FEMS microbiology letters.

[24]  K. Zhou,et al.  Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. , 2009, Structure.

[25]  J. M. Dow,et al.  Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A , 2008, BMC Genomics.

[26]  E. Koonin,et al.  A Novel Family of Sequence-specific Endoribonucleases Associated with the Clustered Regularly Interspaced Short Palindromic Repeats* , 2008, Journal of Biological Chemistry.

[27]  Dong Hee Lee,et al.  Differentiation of citrus bacterial canker strains in Korea by host range, rep-PCR fingerprinting and 16S rDNA analysis , 2008, European Journal of Plant Pathology.

[28]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[29]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[30]  Alexander Bolotin,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[31]  G. Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[32]  T. Schubert,et al.  Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. , 2004, Plant disease.

[33]  A. Das Citrus canker - A review , 2003 .

[34]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[35]  F. Rodríguez-Valera,et al.  Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning , 1995, Molecular microbiology.

[36]  J. Swings,et al.  Reclassification of Xanthomonas , 1995 .

[37]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[38]  M. Goto,et al.  A Comparative Study of the Strains of Xanthomonas campestris pv. citri Isolated from Citrus Canker in Japan and Cancrosis B in Argentina , 1980 .

[39]  Eugene V Koonin,et al.  Annotation and Classification of CRISPR-Cas Systems. , 2015, Methods in molecular biology.

[40]  M. Shams-bakhsh,et al.  Genetic Diversity Among Xanthomonas Citri Subsp. Citri Strains in Iran , 2012 .

[41]  Hu Junhua,et al.  Primary analysis on genomic diversities of Xanthomonas axnopodis pv. citri in nine provinces of China. , 2010 .

[42]  Jaime Cubero,et al.  Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. , 2004, Molecular plant pathology.

[43]  Tal Pupko,et al.  Structural Genomics , 2005 .

[44]  Tim R. Gottwald,et al.  Citrus Canker: The Pathogen and Its Impact , 2002 .

[45]  R. E. Stall Canker, a Threat to Citrus in the Gulf-Coast States , 1983 .