Robust microscale structural superlubricity between graphite and nanostructured surface

[1]  Q. Zheng,et al.  Structural superlubricity with a contaminant-rich interface , 2022, Journal of the Mechanics and Physics of Solids.

[2]  Q. Zheng,et al.  Electro-superlubric springs for continuously tunable resonators and oscillators , 2021, Communications Materials.

[3]  Kenji Watanabe,et al.  UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures , 2021, Nature Materials.

[4]  Q. Zheng,et al.  100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions , 2021, National science review.

[5]  Jinhui Nie,et al.  Microscale Schottky superlubric generator with high direct-current density and ultralong life , 2021, Nature Communications.

[6]  Ming Ma,et al.  Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water. , 2021, Journal of colloid and interface science.

[7]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[8]  Q. Zheng,et al.  Characterization of a Microscale Superlubric Graphite Interface. , 2020, Physical review letters.

[9]  G. Aeppli,et al.  Load-induced dynamical transitions at graphene interfaces , 2020, Proceedings of the National Academy of Sciences.

[10]  Q. Zheng,et al.  Theoretical study of superlubric nanogenerators with superb performances , 2020 .

[11]  Q. Zheng,et al.  Negative friction coefficient in microscale graphite/mica layered heterojunctions , 2020, Science Advances.

[12]  L. Qian,et al.  Dependence of water adsorption on the surface structure of silicon wafers aged under different environmental conditions. , 2019, Physical chemistry chemical physics : PCCP.

[13]  Jianbin Luo,et al.  Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water. , 2019, The journal of physical chemistry letters.

[14]  E. Meyer,et al.  Structural superlubricity and ultralow friction across the length scales , 2018, Nature.

[15]  Quanshui Zheng,et al.  Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions , 2018, Nature Materials.

[16]  L. Qian,et al.  Water Adsorption on Hydrophilic and Hydrophobic Surfaces of Silicon , 2018 .

[17]  Jianbin Luo,et al.  Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere , 2017, Nature Communications.

[18]  M. Baykara,et al.  Structural lubricity under ambient conditions , 2016, Nature Communications.

[19]  Sanket A. Deshmukh,et al.  Macroscale superlubricity enabled by graphene nanoscroll formation , 2015, Science.

[20]  Huajian Gao,et al.  Mechanics of thermophoretic and thermally induced edge forces in carbon nanotube nanodevices , 2012 .

[21]  Kenneth Holmberg,et al.  Global energy consumption due to friction in passenger cars , 2012 .

[22]  J. Heath,et al.  The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. , 2011, Nano letters.

[23]  Nicola Manini,et al.  Atomistic simulations of the sliding friction of graphene flakes , 2009, 0904.3456.

[24]  Sheng Wang,et al.  Self-retracting motion of graphite microflakes. , 2007, Physical review letters.

[25]  Satoshi Izumi,et al.  Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation , 2007 .

[26]  A. Rydberg,et al.  Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system , 2006 .

[27]  Mark O. Robbins,et al.  Finite element modeling of elasto-plastic contact between rough surfaces , 2005 .

[28]  Steve Granick,et al.  Slippery questions about complex fluids flowing past solids , 2003, Nature materials.

[29]  J. Sader,et al.  Calibration of rectangular atomic force microscope cantilevers , 1999 .

[30]  Rodney S. Ruoff,et al.  Tailoring graphite with the goal of achieving single sheets , 1999 .

[31]  J. Pireaux,et al.  Analysis of Polystyrene (PS) by XPS , 1996 .

[32]  J. Sader,et al.  Method for the calibration of atomic force microscope cantilevers , 1995 .

[33]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[34]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[35]  S. Granick,et al.  Motions and Relaxations of Confined Liquids , 1991, Science.

[36]  Yu-Chong Tai,et al.  IC-processed electrostatic micro-motors , 1988, Technical Digest., International Electron Devices Meeting.

[37]  J. Koberstein,et al.  Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether) , 1988 .

[38]  O. L. Blakslee,et al.  Elastic Constants of Compression-Annealed Pyrolytic Graphite , 1970 .

[39]  E. J. Seldin,et al.  Elastic Constants and Electron‐Microscope Observations of Neutron‐Irradiated Compression‐Annealed Pyrolytic and Single‐Crystal Graphite , 1970 .