Mobile Elements: Drivers of Genome Evolution

Mobile elements within genomes have driven genome evolution in diverse ways. Particularly in plants and mammals, retrotransposons have accumulated to constitute a large fraction of the genome and have shaped both genes and the entire genome. Although the host can often control their numbers, massive expansions of retrotransposons have been tolerated during evolution. Now mobile elements are becoming useful tools for learning more about genome evolution and gene function.

[1]  J. Brosius,et al.  Reverse transcriptase: Mediator of genomic plasticity , 2005, Virus Genes.

[2]  Ronald H. A. Plasterk,et al.  Characterization of Sleeping Beauty Transposition and Its Application to Genetic Screening in Mice , 2003, Molecular and Cellular Biology.

[3]  J. Volff,et al.  Diversity of retrotransposable elements in compact pufferfish genomes. , 2003, Trends in genetics : TIG.

[4]  E. Ostertag,et al.  SVA elements are nonautonomous retrotransposons that cause disease in humans. , 2003, American journal of human genetics.

[5]  J. V. Moran,et al.  Allelic heterogeneity in LINE-1 retrotransposition activity. , 2003, American journal of human genetics.

[6]  M. Pardue,et al.  Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. , 2003, Annual review of genetics.

[7]  Ronald H. A. Plasterk,et al.  Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi , 2003, Nature.

[8]  P. Deininger,et al.  RNA truncation by premature polyadenylation attenuates human mobile element activity , 2003, Nature Genetics.

[9]  C. Rudin,et al.  Human Alu element retrotransposition induced by genotoxic stress , 2003, Nature Genetics.

[10]  K. Ray,et al.  A Line 1 insertion in the Factor IX gene segregates with mild hemophilia B in dogs , 2003, Mammalian Genome.

[11]  Keith M. Derbyshire,et al.  The outs and ins of transposition: from Mu to Kangaroo , 2003, Nature Reviews Molecular Cell Biology.

[12]  Yoshiyuki Sakaki,et al.  Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates , 2003, Genome Biology.

[13]  Cameron S. Osborne,et al.  LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1 , 2003, Science.

[14]  E. Eichler,et al.  An Alu transposition model for the origin and expansion of human segmental duplications. , 2003, American journal of human genetics.

[15]  C. Schmid Alu: a parasite's parasite? , 2003, Nature Genetics.

[16]  V. Wood,et al.  Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. , 2003, Genome research.

[17]  D. Garfinkel,et al.  Post-transcriptional cosuppression of Ty1 retrotransposition. , 2003, Genetics.

[18]  Sabine Fritz,et al.  Transposon mutagenesis of the mouse germline. , 2003, Genetics.

[19]  Anton Buzdin,et al.  The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. , 2003, Nucleic acids research.

[20]  Shawn M. Burgess,et al.  Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration , 2003, Science.

[21]  D. Voytas,et al.  Controlling integration specificity of a yeast retrotransposon , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Bestor,et al.  Cytosine methylation mediates sexual conflict. , 2003, Trends in genetics : TIG.

[24]  H. Kazazian,et al.  Tracking an embryonic L1 retrotransposition event , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Meselson,et al.  Retroelements containing introns in diverse invertebrate taxa , 2003, Nature Genetics.

[26]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[27]  A. Furano,et al.  Fruit flies and humans respond differently to retrotransposons. , 2002, Current opinion in genetics & development.

[28]  R. Deberardinis,et al.  A mouse model of human L1 retrotransposition , 2002, Nature Genetics.

[29]  M. Kay,et al.  In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[30]  Jef D Boeke,et al.  Human L1 element target‐primed reverse transcription in vitro , 2002, The EMBO journal.

[31]  N. Okada,et al.  LINEs Mobilize SINEs in the Eel through a Shared 3′ Sequence , 2002, Cell.

[32]  Paul Shinn,et al.  HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots , 2002, Cell.

[33]  Giovanni Parmigiani,et al.  Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo , 2002, Cell.

[34]  J. V. Moran,et al.  Genomic Deletions Created upon LINE-1 Retrotransposition , 2002, Cell.

[35]  E. Green,et al.  Systematic sequencing of cDNA clones using the transposon Tn5. , 2002, Nucleic acids research.

[36]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[37]  M. Speek,et al.  Many human genes are transcribed from the antisense promoter of L1 retrotransposon. , 2002, Genomics.

[38]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[39]  Y. Jiang Transcriptional cosuppression of yeast Ty1 retrotransposons. , 2002, Genes & development.

[40]  Wayne N Frankel,et al.  The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. , 2002, Genomics.

[41]  E. Ostertag,et al.  Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. , 2001, Genome research.

[42]  E. Ostertag,et al.  Biology of mammalian L1 retrotransposons. , 2001, Annual review of genetics.

[43]  A. Troxel,et al.  Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. , 2001, Genome research.

[44]  E. Ostertag,et al.  A novel active L1 retrotransposon subfamily in the mouse. , 2001, Genome research.

[45]  R. Poulter,et al.  L1-like non-LTR retrotransposons in the yeast Candida albicans , 2001, Current Genetics.

[46]  M. Snyder,et al.  Emerging technologies in yeast genomics , 2001, Nature Reviews Genetics.

[47]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[48]  Z. Gu,et al.  Evolutionary analyses of the human genome , 2001, Nature.

[49]  M. Kay,et al.  Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system , 2000, Nature Genetics.

[50]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[51]  G. Rubin,et al.  The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. , 1999, Genetics.

[52]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[53]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[54]  M W Simmen,et al.  Nonmethylated transposable elements and methylated genes in a chordate genome. , 1999, Science.

[55]  T. Heidmann,et al.  Taming of transposable elements by homology-dependent gene silencing , 1999, Nature Genetics.

[56]  C. Walsh,et al.  Transcription of IAP endogenous retroviruses is constrained by cytosine methylation , 1998, Nature Genetics.

[57]  David G. Schatz,et al.  Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system , 1998, Nature.

[58]  S. Nuzhdin,et al.  The relationship between the rate of transposition and transposable element copy number for copia and Doc retrotransposons of Drosophila melanogaster. , 1998, Genetical research.

[59]  M. Lyon,et al.  X-Chromosome inactivation: a repeat hypothesis , 1998, Cytogenetic and Genome Research.

[60]  D. Engelke,et al.  5′ Processing of tRNA Precursors Can Be Modulated by the Human La Antigen Phosphoprotein , 1998, Molecular and Cellular Biology.

[61]  R. Weinberg,et al.  hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization , 1997, Cell.

[62]  J. Boeke LINEs and Alus — the polyA connection , 1997, Nature Genetics.

[63]  T R Hughes,et al.  Reverse transcriptase motifs in the catalytic subunit of telomerase. , 1997, Science.

[64]  H. Fujiwara,et al.  A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. , 1997, Nucleic acids research.

[65]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[67]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[68]  S. Devine,et al.  Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. , 1996, Genes & development.

[69]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[70]  D. Chalker,et al.  Ty3 integrates within the region of RNA polymerase III transcription initiation. , 1992, Genes & development.

[71]  D. Hartl,et al.  Introduction of the transposable element mariner into the germline of Drosophila melanogaster. , 1991, Genetics.

[72]  D. Garfinkel,et al.  Single-step selection for Ty1 element retrotransposition. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[73]  T. Eickbush,et al.  Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. , 1990, Journal of molecular biology.

[74]  H. Lodish,et al.  Sequence of Dictyostelium DIRS-1: An apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence , 1985, Cell.