The equation of state package FEOS for high energy density matter
暂无分享,去创建一个
[1] C. Ronchi,et al. Non‐congruent phase coexistence in strongly coupled chemically reactive plasmas , 2003 .
[2] C. Alcock,et al. Thermodynamic Properties of Individual Substances , 1994 .
[3] Gilbert W. Collins,et al. Shock vaporization of silica and the thermodynamics of planetary impact events , 2012 .
[4] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .
[5] J. Connolly. Liquid‐vapor phase relations in the Si‐O system: A calorically constrained van der Waals‐type model , 2016 .
[6] N. Metropolis,et al. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory , 1949 .
[7] Thomas J. Ahrens,et al. Shock melting and vaporization of lunar rocks and minerals , 1972 .
[8] J. C. Slater,et al. The Thomas-Fermi Method for Metals , 1935 .
[9] E. Teller,et al. Fundamentals Of Equations Of State , 2002 .
[10] M. K. Brachman. Thermodynamic Functions on the Generalized Fermi-Thomas Theory , 1951 .
[11] H. Jensen. Das Druck-Dichte-Diagramm der Elemente bei höheren Drucken am Temperaturnullpunkt , 1938 .
[12] Pablo G. Debenedetti,et al. Metastable Liquids: Concepts and Principles , 1996 .
[13] S. P. Gill,et al. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .
[14] G. Zimmerman,et al. A new quotidian equation of state (QEOS) for hot dense matter , 1988 .
[15] K. Azizi,et al. Analysis of the Λb → Λℓ+ℓ− transition in the SM4 using form factors from full QCD , 2011, The European Physical Journal A.
[16] V. Gryaznov,et al. Properties of high-temperature phase diagram and critical point parameters in silica , 2013, 1312.7592.
[17] F. Rosmej,et al. Quasi-static heating of stack targets with intense ion beams for equation of state measurements , 2009 .
[18] David A. Young,et al. Critical Point of Metals from the van der Waals Model , 1971 .
[19] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.
[20] H. J. Melosh,et al. A hydrocode equation of state for SiO2 , 2007 .
[21] I. Iosilevskiy. NON-CONGRUENT PHASE TRANSITIONS IN COSMIC MATTER AND IN THE LABORATORY , 2010, 1005.4186.
[22] J. Meyer-ter-Vehn,et al. AN EQUATION OF STATE CODE FOR HOT DENSE MATTER, BASED ON THE QEOS DESCRIPTION , 1998 .
[23] V. Gryaznov,et al. Uranium critical point problem , 2005, 1312.7584.
[24] C. Deutsch,et al. Thomas–Fermi‐like and average atom models for dense and hot matter , 1996 .
[25] C. Ronchi,et al. Equation of State of UO2 , 2001 .
[26] B. Guillot,et al. A numerical investigation of the liquid–vapor coexistence curve of silica , 1996 .
[27] C. Ronchi,et al. Equation of State of Uranium Dioxide: Data Collection , 2004 .
[28] M. Hempel,et al. Noncongruence of the nuclear liquid-gas and deconfinement phase transitions , 2013, 1302.2835.
[29] Moscow,et al. Dynamics of volumetrically heated matter passing through the liquid-vapor metastable states ✩ , 2012, 1205.2579.
[30] David A. Young,et al. A new global equation of state model for hot, dense matter , 1995 .
[31] P. Gombäs. Die statistische Theorie des Atoms und ihre Anwendungen , 1949 .
[32] L. Stixrude,et al. First-principles simulations of liquid silica : Structural and dynamical behavior at high pressure , 2007 .
[33] J W Gibbs. The scientific papers, vol.1 , 1906 .