Almost all multipartite qubit quantum states have trivial stabilizer

The stabilizer group of an n-qubit state \psi is the set of all matrices of the form g=g_1\otimes\cdots\otimes g_n, with g_1,...,g_n being any 2x2 invertible complex matrices, that satisfy g\psi=\psi. We show that for 5 or more qubits, except for a set of states of zero measure, the stabilizer group of multipartite entangled states is trivial; that is, containing only the identity element. We use this result to show that for 5 or more qubits, the action of deterministic local operations and classical communication (LOCC) can almost always be simulated simply by local unitary (LU) operations. This proves that almost all n-qubit states with n>4 are isolated, that is they can neither be reached nor converted into any other (n-partite entangled), LU-inequivalent state via deterministic LOCC. We also find a simple and elegant expression for the maximal probability to convert one multi-qubit entangled state to another for this generic set of states.

[1]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[2]  J I de Vicente,et al.  Maximally entangled set of multipartite quantum states. , 2013, Physical review letters.

[3]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[4]  Oliver Rudolph The uniqueness theorem for entanglement measures , 2001, quant-ph/0105104.

[5]  Xiao-Gang Wen,et al.  Complete classification of one-dimensional gapped quantum phases in interacting spin systems , 2011, 1103.3323.

[6]  G. E. Bredon Introduction to compact transformation groups , 1972 .

[7]  Hoi-Kwong Lo,et al.  Increasing entanglement monotones by separable operations. , 2012, Physical review letters.

[8]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[9]  B. M. Fulk MATH , 1992 .

[10]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[11]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[12]  N. Wallach,et al.  Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.

[13]  C. Spee,et al.  Maximally entangled set of tripartite qutrit states and pure state separable transformations which are not possible via local operations and classical communication , 2016 .

[14]  Nolan R. Wallach,et al.  Geometric Invariant Theory: Over the Real and Complex Numbers , 2017 .

[15]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[16]  B. Kraus,et al.  The maximally entangled set of 4-qubit states , 2015, 1510.09164.

[17]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[18]  N. Wallach,et al.  Necessary and sufficient conditions for local manipulation of multipartite pure quantum states , 2011, 1103.5096.

[19]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[20]  G. Kempf,et al.  The length of vectors in representation spaces , 1979 .

[21]  E. Solano,et al.  Entanglement equivalence of N-qubit symmetric states , 2009, 0908.0886.

[22]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[23]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[24]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[25]  Eric Chitambar,et al.  Local quantum transformations requiring infinite rounds of classical communication. , 2011, Physical review letters.

[26]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[27]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[28]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[29]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[30]  Peter J. Love,et al.  A Characterization of Global Entanglement , 2007, Quantum Inf. Process..

[31]  B. Kraus,et al.  Local unitary equivalence of multipartite pure states. , 2009, Physical review letters.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[34]  Hermann Kampermann,et al.  Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm , 2011 .

[35]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.