Almost all multipartite qubit quantum states have trivial stabilizer
暂无分享,去创建一个
[1] H. Briegel,et al. Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.
[2] J I de Vicente,et al. Maximally entangled set of multipartite quantum states. , 2013, Physical review letters.
[3] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[4] Oliver Rudolph. The uniqueness theorem for entanglement measures , 2001, quant-ph/0105104.
[5] Xiao-Gang Wen,et al. Complete classification of one-dimensional gapped quantum phases in interacting spin systems , 2011, 1103.3323.
[6] G. E. Bredon. Introduction to compact transformation groups , 1972 .
[7] Hoi-Kwong Lo,et al. Increasing entanglement monotones by separable operations. , 2012, Physical review letters.
[8] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[9] B. M. Fulk. MATH , 1992 .
[10] M. Kafatos. Bell's theorem, quantum theory and conceptions of the universe , 1989 .
[11] C. H. Bennett,et al. Quantum nonlocality without entanglement , 1998, quant-ph/9804053.
[12] N. Wallach,et al. Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.
[13] C. Spee,et al. Maximally entangled set of tripartite qutrit states and pure state separable transformations which are not possible via local operations and classical communication , 2016 .
[14] Nolan R. Wallach,et al. Geometric Invariant Theory: Over the Real and Complex Numbers , 2017 .
[15] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[16] B. Kraus,et al. The maximally entangled set of 4-qubit states , 2015, 1510.09164.
[17] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[18] N. Wallach,et al. Necessary and sufficient conditions for local manipulation of multipartite pure quantum states , 2011, 1103.5096.
[19] V. Vedral,et al. Entanglement in many-body systems , 2007, quant-ph/0703044.
[20] G. Kempf,et al. The length of vectors in representation spaces , 1979 .
[21] E. Solano,et al. Entanglement equivalence of N-qubit symmetric states , 2009, 0908.0886.
[22] Travis Norsen,et al. Bell's theorem , 2011, Scholarpedia.
[23] C. Wampler,et al. Basic Algebraic Geometry , 2005 .
[24] M. Nielsen. Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.
[25] Eric Chitambar,et al. Local quantum transformations requiring infinite rounds of classical communication. , 2011, Physical review letters.
[26] V. Buzek,et al. Quantum secret sharing , 1998, quant-ph/9806063.
[27] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[28] David Pérez-García,et al. Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .
[29] B. Moor,et al. Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.
[30] Peter J. Love,et al. A Characterization of Global Entanglement , 2007, Quantum Inf. Process..
[31] B. Kraus,et al. Local unitary equivalence of multipartite pure states. , 2009, Physical review letters.
[32] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[33] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[34] Hermann Kampermann,et al. Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm , 2011 .
[35] Laura Mančinska,et al. Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.