Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss

Primary open angle glaucoma (POAG) is a progressive optic neuropathy characterized by retinal ganglion cell loss. Experimental primate glaucoma indicates neuronal degeneration of the lateral geniculate nucleus (LGN) and activity changes in the visual cortex (V1). Neuronal degeneration has also been shown in a post-mortem human study of the optic nerve, LGN and visual cortex. Functional magnetic resonance imaging (fMRI), a non-invasive means of inferring function-specific neuronal activity, provides an opportunity to evaluate glaucomatous changes in neuronal activity throughout the visual pathway in vivo. The purpose of this study is to demonstrate that the relationship between visual field loss in human POAG and the functional organization of V1 can be measured using novel fMRI analysis methods. Visual field defects were measured using standard automated perimetry (SAP). A retinotopic map of visual space was obtained for V1, and the retinotopy data was fit with a template. The template was used to project regions within the visual field onto a flattened representation of V1. Viewing through the glaucomatous vs. fellow eye was compared by alternately presenting each eye with a scotoma-mapping stimulus. The resulting blood oxygen level dependent (BOLD) fMRI response was compared to interocular differences in thresholds for corresponding regions of the visual field. The spatial pattern of activity observed in the flattened representation agreed with the pattern of visual field loss. Furthermore, the amplitude of the BOLD response was correlated on a pointwise basis with the difference in sensitivity thresholds between the glaucomatous and fellow eyes (r = 0.53, p < 0.0001). The BOLD signal in human V1 is altered for POAG patients in a manner consistent with the loss of visual function. FMRI of visual brain areas is a potential means for quantifying glaucomatous changes in neuronal activity. This should enhance our understanding of glaucoma, and could lead to new diagnostic techniques and therapies.

[1]  Nitin Ohri,et al.  Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. , 2004, Investigative ophthalmology & visual science.

[2]  Y. Burnod,et al.  [Cortical response in age-related macular degeneration (part I). Methodology and subject specificities]. , 2004, Journal francais d'ophtalmologie.

[3]  Jason W. Osborne,et al.  The power of outliers (and why researchers should ALWAYS check for them) , 2004 .

[4]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Linda Henriksson,et al.  Multifocal fMRI mapping of visual cortical areas , 2005, NeuroImage.

[6]  R S Harwerth,et al.  Glaucoma in primates: cytochrome oxidase reactivity in parvo- and magnocellular pathways. , 2000, Investigative ophthalmology & visual science.

[7]  G. Liney,et al.  Repeatability of functional MRI for conformal avoidance radiotherapy planning , 2006, Journal of magnetic resonance imaging : JMRI.

[8]  P. Kaufman,et al.  Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. , 2000, Archives of ophthalmology.

[9]  Y. Burnod,et al.  [Cortical response to age-related macular degeneration (Part II). Functional MRI study]. , 2004, Journal francais d'ophtalmologie.

[10]  P. Kaufman,et al.  Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. , 2001, Investigative ophthalmology & visual science.

[11]  Earl L. Smith,et al.  Retinal inputs to the monkey's lateral geniculate nucleus in experimental glaucoma , 1993 .

[12]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[13]  Marlene C. Richter,et al.  Retinotopic Organization and Functional Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[14]  P. Khaw,et al.  Primary open-angle glaucoma , 2004, The Lancet.

[15]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[16]  Ivan Goldberg,et al.  Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. , 2005, Archives of ophthalmology.

[17]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[18]  B. Wandell,et al.  Specializations for Chromatic and Temporal Signals in Human Visual Cortex , 2005, Journal of Neuroscience.

[19]  P. Kaufman,et al.  Oxidative injury by peroxynitrite in neural and vascular tissue of the lateral geniculate nucleus in experimental glaucoma. , 2005, Experimental eye research.

[20]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[21]  N Fujita,et al.  Lateral geniculate nucleus: anatomic and functional identification by use of MR imaging. , 2001, AJNR. American journal of neuroradiology.

[22]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[23]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  M. Takagi,et al.  [Multifocal electroretinograms in patients with branch retinal artery occlusion]. , 1999, Nippon Ganka Gakkai zasshi.

[25]  Donald C Hood,et al.  Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma , 2003, Progress in Retinal and Eye Research.

[26]  Functional magnetic resonance imaging examination of the magnocellular visual pathway in nonpsychotic relatives of persons with schizophrenia , 2004, Schizophrenia Research.

[27]  Robert Ritch,et al.  Multifocal visual evoked potential responses in glaucoma patients with unilateral hemifield defects. , 2003, American journal of ophthalmology.

[28]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[29]  R. Weinreb,et al.  Lateral geniculate nucleus in glaucoma. , 1994, American journal of ophthalmology.

[30]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[31]  N. Gupta,et al.  Brain Changes in Glaucoma , 2003, European journal of ophthalmology.

[32]  S L Graham,et al.  Objective VEP Perimetry in Glaucoma: Asymmetry Analysis to Identify Early Deficits , 2000, Journal of glaucoma.

[33]  J. Frahm,et al.  Dynamic MR imaging of human brain oxygenation during rest and photic stimulation , 1992, Journal of magnetic resonance imaging : JMRI.

[34]  E. Hedley‐Whyte,et al.  Lateral geniculate nucleus in glaucoma. , 1993, American journal of ophthalmology.

[35]  Jonathan D. Cohen,et al.  Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners , 1993, Nature.

[36]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[38]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[39]  P. Kaufman,et al.  Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. , 2000, Investigative ophthalmology & visual science.

[40]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[41]  R. Harwerth,et al.  Visual field defects and retinal ganglion cell losses in patients with glaucoma. , 2006, Archives of ophthalmology.

[42]  F A Miles,et al.  Initiation of saccades during fixation or pursuit: evidence in humans for a single mechanism. , 1996, Journal of neurophysiology.

[43]  Brian A Wandell,et al.  Color Signals in Human Motion-Selective Cortex , 1999, Neuron.

[44]  Jens Frahm,et al.  Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation , 1996, Experimental Brain Research.

[45]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[46]  S. Graham,et al.  Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. , 1998, Investigative ophthalmology & visual science.

[47]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[48]  A. Alavi,et al.  Positron emission tomography to study the effect of eye closure and optic nerve damage on human cerebral glucose metabolism. , 1989, American journal of ophthalmology.

[49]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[50]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[51]  R. Shapley,et al.  Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque , 1981, Nature.

[52]  R S Harwerth,et al.  Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. , 2001, Investigative ophthalmology & visual science.

[53]  Chris A. Johnson,et al.  Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. , 2003, American journal of ophthalmology.

[54]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[55]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[56]  Detection of visual dysfunction in optic atrophy by functional magnetic resonance imaging during monocular visual stimulation. , 1996, American journal of ophthalmology.

[57]  I. Narabayashi,et al.  Comparative study of cerebral blood flow in patients with normal-tension glaucoma and control subjects. , 2006, American journal of ophthalmology.

[58]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[59]  Donald C Hood,et al.  Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. , 2003, Investigative ophthalmology & visual science.

[60]  E. Schwartz A quantitative model of the functional architecture of human striate cortex with application to visual illusion and cortical texture analysis , 1980, Biological Cybernetics.

[61]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[62]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  O. D. Creutzfeldt,et al.  A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey , 1979, Experimental Brain Research.

[64]  S Kangovi,et al.  An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. , 2000, Investigative ophthalmology & visual science.

[65]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[66]  A Ralph Henderson,et al.  The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[67]  P. Kaufman,et al.  Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma , 2003, Progress in Retinal and Eye Research.

[68]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[69]  M. Brodsky,et al.  Magnetic resonance imaging of the visual pathways in human albinos. , 1993, Journal of pediatric ophthalmology and strabismus.

[70]  E. DeYoe,et al.  Functional magnetic resonance imaging (FMRI) of the human brain , 1994, Journal of Neuroscience Methods.

[71]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[72]  R. Buxton Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques , 2002 .

[73]  N. Gupta,et al.  Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex , 2006, British Journal of Ophthalmology.

[74]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[75]  David J Heeger,et al.  Psychophysical evidence for a magnocellular pathway deficit in dyslexia , 1998, Vision Research.

[76]  J. Morrison,et al.  Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma. , 1997, Australian and New Zealand journal of ophthalmology.

[77]  S. Graham,et al.  Multifocal objective perimetry in the detection of glaucomatous field loss. , 2002, American journal of ophthalmology.