Procedural Generation of Roads

In this paper, we propose an automatic method for generating roads based on a weighted anisotropic shortest path algorithm. Given an input scene, we automatically create a path connecting an initial and a final point. The trajectory of the road minimizes a cost function that takes into account the different parameters of the scene including the slope of the terrain, natural obstacles such as rivers, lakes, mountains and forests. The road is generated by excavating the terrain along the path and instantiating generic parameterized models.

[1]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[2]  Luc Van Gool,et al.  Procedural modeling of buildings , 2006, SIGGRAPH 2006.

[3]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[4]  Sylvain Lefebvre,et al.  Structure‐Preserving Reshape for Textured Architectural Scenes , 2009, Comput. Graph. Forum.

[5]  Neil C. Rowe,et al.  Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects , 1990, IEEE Trans. Robotics Autom..

[6]  Pascal Müller,et al.  Procedural modeling of cities , 2001, SIGGRAPH.

[7]  Xiaobo Yu,et al.  Template-based generation of road networks for virtual city modeling , 2002, VRST '02.

[8]  John N. Tsitsiklis,et al.  Implementation of efficient algorithms for globally optimal trajectories , 1998, IEEE Trans. Autom. Control..

[9]  Karan Singh,et al.  Sketching piecewise clothoid curves , 2008, SBM'08.

[10]  J. Hespanha,et al.  Discrete approximations to continuous shortest-path: application to minimum-risk path planning for groups of UAVs , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  Daniel G. Aliaga,et al.  Interactive example-based urban layout synthesis , 2008, SIGGRAPH 2008.

[12]  Dereck S. Meek,et al.  A controlled clothoid spline , 2005, Comput. Graph..

[13]  Karan Singh,et al.  Sketch-based path design , 2009, Graphics Interface.

[14]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[15]  P. Varaiya,et al.  Grid discretization based method for anisotropic shortest path problem over continuous regions , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[16]  Daniel G. Aliaga,et al.  Visualization of Simulated Urban Spaces: Inferring Parameterized Generation of Streets, Parcels, and Aerial Imagery , 2009, IEEE Transactions on Visualization and Computer Graphics.

[17]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[18]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[19]  Jörg-Rüdiger Sack,et al.  Approximation algorithms for geometric shortest path problems , 2000, STOC '00.

[20]  Jörg-Rüdiger Sack,et al.  Shortest Anisotropic Paths on Terrains , 1999, ICALP.

[21]  H. Pottmann,et al.  Energy-minimizing splines in manifolds , 2004, SIGGRAPH 2004.

[22]  Fabrice Neyret,et al.  Real‐Time Rendering and Editing of Vector‐based Terrains , 2008, Comput. Graph. Forum.

[23]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[24]  Eugene Zhang,et al.  Interactive procedural street modeling , 2008, ACM Trans. Graph..

[25]  Jörg-Rüdiger Sack,et al.  Determining approximate shortest paths on weighted polyhedral surfaces , 2005, JACM.

[26]  Radomír Mech,et al.  Realistic modeling and rendering of plant ecosystems , 1998, SIGGRAPH.

[27]  Richard A. Volz,et al.  Teleautonomous systems: projecting and coordinating intelligent action at a distance , 1990, IEEE Trans. Robotics Autom..