Improved measurement of neutrino oscillation parameters by the NOvA experiment
暂无分享,去创建一个
D. A. Wickremasinghe | A. Aurisano | C. Bromberg | T. Miao | Vasudha Bhatnagar | M. Lokajicek | V. Ryabov | T. Coan | L. Asquith | V. Kus | P. Vokac | D. Whittington | R. Gandrajula | E. Tiras | P. Ding | R. Group | A. Kumar | K. Soustruznik | M. Messier | J. Zálešák | J. Nelson | N. Anfimov | S. Magill | S. Mishra | A. Tsaris | A. Olshevskiy | A. Habig | A. Sheshukov | M. Strait | J. Vasel | B. Bhuyan | S. Mufson | V. Grichine | P. Shanahan | K. Mulder | N. Buchanan | G. Pawloski | M. Wetstein | P. Baldi | W. Mann | A. Norrick | J. Wolcott | F. Gao | O. Klimov | D. Kaplan | H. Gallagher | M. Goodman | V. Matveev | G. Davies | R. Gomes | G. Feldman | F. Hakl | J. Huang | R. Petti | D. Naples | Z. Djurcic | J. Hartnell | E. Smith | P. Filip | M. He | J. Liu | B. Mayes | Y. Torun | E. Arrieta-Diaz | M. Baird | R. Bernstein | J. Bian | R. Hatcher | J. Hewes | A. Himmel | A. Holin | K. Lang | M. Marshak | E. Niner | T. Olson | J. Paley | R. Plunkett | B. Rebel | A. Sousa | L. Suter | J. Urheim | P. Adamson | W. Miller | L. Mualem | R. Nichol | R. Patterson | M. Sanchez | R. Talaga | J. Thomas | P. Vahle | S. Wojcicki | R. Zwaska | L. Cremonesi | P. Rojas | C. Backhouse | B. Bambah | K. Bays | A. Butkevich | E. Catano-Mur | M. Colo | P. Derwent | E. Dukes | H. Duyang | R. Ehrlich | M. Frank | A. Giri | K. Heller | F. Jediný | S. Kotelnikov | H. Meyer | R. Mohanta | A. Moren | M. Muether | A. Norman | F. Psihas | O. Samoylov | J. Smolík | N. Solomey | P. Tas | R. B. Thayyullathil | T. Vrba | S. Zadorozhnyy | W. Wu | M. Judah | L. Aliaga | A. Mislivec | M. A. Acero | A. Booth | S. Calvez | A. Christensen | E. Ewart | J. Franc | B. Jargowsky | L. Koerner | C. Kuruppu | P. Lasorak | A. Lister | M. Plata | W. Mu | N. Nayak | J. Ott | A. Rafique | M. Rajaoalisoa | B. Ramson | P. Snopok | B. T. Oregui | Z. Vallari | M. Wallbank | Y. Xiao | K. Yonehara | T. Warburton | M. Groh | A. Antoshkin | R. Keloth | L. Kolupaeva | T. Nosek | O. Petrova | P. Singh | J. Tripathi | W. A. Mann | T. Thakore | A. Sztuc | I. Kakorin | J. Lesmeister | B. Choudhary | A. Back | T. Carroll | J. Jarosz | N. Balashov | S. S. Falero | T. Lackey | M. Dolce | J. Blair | M. Elkins | S. Bashar | R. Bowles | D. Doyle | A. Hall | C. Kullenberg | M. Kubu | M. Martínez-Casales | A. Morozova | V. Raj | A. Sutton | S. Swain | C. Sweeney | J. Trokan-Tenorio | Y. Yu | Y. Zhang | D. Bhattarai | A. Kalitkina | J. Porter | A. Yankelevich | D. Phan | S. Lin | D. D. Tonguino | H. Hausner | C. Johnson | R. Kralik | H. Oh | A. Y. Dombara | D. P. M'endez | W. Wu | P. Roy | S. Yu | B. Guo | V. Singh
[1] A. Ashkenazi,et al. Neutrino-Nucleon Cross-Section Model Tuning in GENIE v3 , 2021, 2104.09179.
[2] M. Hartz,et al. Improved constraints on neutrino mixing from the T2K experiment with 3.13×1021 protons on target , 2021, Physical Review D.
[3] A. Palazzo,et al. Nonstandard Neutrino Interactions as a Solution to the NOνA and T2K Discrepancy. , 2020, Physical review letters.
[4] P. Denton,et al. CP-Violating Neutrino Nonstandard Interactions in Long-Baseline-Accelerator Data. , 2020, Physical review letters.
[5] M. Groh. Constraints on Neutrino Oscillation Parameters from Neutrinos and Antineutrinos with Machine Learning , 2021 .
[6] K. Kelly,et al. Neutrino mass ordering in light of recent data , 2020, 2007.08526.
[7] Astronomy,et al. Precision Constraints for Three-Flavor Neutrino Oscillations from the Full MINOS+ and MINOS Dataset. , 2020, Physical review letters.
[8] The Super-Kamiokande Collaboration. Publisher Correction: Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations , 2020, Nature.
[9] Adjusting neutrino interaction models and evaluating uncertainties using NOvA near detector data , 2020, The European Physical Journal C.
[10] The Super-Kamiokande Collaboration. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations , 2020 .
[11] M. Hartz,et al. Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations. , 2019, 1910.03887.
[12] Prabhjot Singh. Extraction of Neutrino Oscillation Parameters using a Simultaneous Fit of $\nu_{\mu}$ Disappearance and $\nu_{e}$ Appearance data with the NOvA Experiment , 2019 .
[13] Burt Holzman,et al. Implementation of Feldman-Cousins corrections and oscillation calculations in the HPC environment for the NOvA Experiment , 2019, EPJ Web of Conferences.
[14] D. P. Méndez,et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. , 2019, Physical review letters.
[15] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[16] Ashutosh Kumar Singh,et al. New constraints on oscillation parameters fromνeappearance andνμdisappearance in the NOvA experiment , 2018, Physical Review D.
[17] Nuruzzaman,et al. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer. , 2018, Physical review letters.
[18] S. Petcov. Discrete flavour symmetries, neutrino mixing and leptonic CP violation , 2017, The European Physical Journal C.
[19] M. Hartz,et al. Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV , 2017, 1710.09126.
[20] J. P. Barron,et al. Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore , 2017, 1707.07081.
[21] F. Psihas. Measurement of Long Baseline Neutrino Oscillations and Improvements from Deep Learning , 2018 .
[22] K. Mahn,et al. Measurement of σaBS and σcX of π+ on carbon by the Dual Use Experiment at TRIUMF (DUET) , 2016 .
[23] Nuruzzaman,et al. Neutrino flux predictions for the NuMI beam , 2016, 1607.00704.
[24] P. Vahle,et al. A convolutional neural network neutrino event classifier , 2016, ArXiv.
[25] M. Betancourt,et al. Deuterium target data for precision neutrino-nucleus cross sections , 2016, 1603.03048.
[26] R. Hatcher,et al. The NuMI Neutrino Beam , 2015, 1507.06690.
[27] R. Hatcher,et al. The NOvA simulation chain , 2015 .
[28] Julia Yarba,et al. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual , 2015, 1510.05494.
[29] S. King. Models of Neutrino Mass, Mixing and CP Violation , 2015, 1510.02091.
[30] P. Mason,et al. Liquid scintillator production for the NOvA experiment , 2015, 1504.04035.
[31] J. Ryckebusch,et al. Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation , 2014, 1412.4624.
[32] Jr.,et al. Measurement of Charged Pion Production Yields off the NuMI Target , 2014, 1404.5882.
[33] R. Gran,et al. Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV , 2013, 1307.8105.
[34] A.Longhin,et al. T2K neutrino flux prediction , 2012, 1211.0469.
[35] M. Kowalski,et al. Inclusive production of protons, anti-protons, neutrons, deuterons and tritons in p+C collisions at 158 GeV/c beam momentum , 2012, The European Physical Journal C.
[36] I. G. Park,et al. Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.
[37] L. Y. Wang,et al. Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.
[38] W. Marsden. I and J , 2012 .
[39] Tejpreet Singh Golan,et al. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.
[40] J. Nieves,et al. Inclusive charged-current neutrino-nucleus reactions , 2011, 1102.2777.
[41] for the NA49 collaboration,et al. Cross Sections and Charged Pion Spectra in Proton-Carbon Interactions at 31 GeV/c , 2011, 1102.0983.
[42] G. Altarelli,et al. Discrete Flavor Symmetries and Models of Neutrino Mixing , 2010, 1002.0211.
[43] R. Hatcher,et al. The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.
[44] G. Tinti. Sterile neutrino oscillations in MINOS and hadron production in pC collisions , 2010 .
[45] J. Marteau,et al. Unified approach for nucleon knock-out and coherent and incoherent pion production in neutrino interactions with nuclei , 2009, 0910.2622.
[46] T. Yang,et al. A hadronization model for few-GeV neutrino interactions , 2009, 0904.4043.
[47] C. Berger,et al. PCAC and coherent pion production by low energy neutrinos , 2008, 0812.2653.
[48] Hiroshi Nunokawa,et al. CP violation and neutrino oscillations , 2007, 0710.0554.
[49] Manfred Lindner,et al. The NOvA Technical Design Report , 2007 .
[50] C. Berger,et al. Lepton mass effects in single pion production by neutrinos , 2007, 0709.4378.
[51] S. Seun. Measurement of pi-K ratios from the NuMI target , 2007 .
[52] Andre Lebedev,et al. Ratio of Pion Kaon Production in Proton Carbon Interactions , 2007 .
[53] P. N. Smith,et al. Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam. , 2006, Physical review letters.
[54] R. Mohapatra,et al. Neutrino Mass and New Physics , 2006, 0910.1778.
[55] V. Cerný,et al. Inclusive production of charged pions in p + C collisions at 158 GeV/c beam momentum , 2005, hep-ex/0606028.
[56] T. Yanagida,et al. Leptogenesis as the origin of matter , 2005, hep-ph/0502169.
[57] E. Oset,et al. Inclusive quasi-elastic neutrino reactions , 2005, nucl-th/0503023.
[58] H. Murayama,et al. What can we learn from neutrinoless double beta decay experiments , 2004, hep-ph/0403167.
[59] P. Bari,et al. Leptogenesis for pedestrians , 2004, hep-ph/0401240.
[60] A. Dell'Acqua,et al. Geant4 - A simulation toolkit , 2003 .
[61] KamLAND-Zen Collaboration. First results from KamLAND: evidence for reactor antineutrino disappearance. , 2002, Physical review letters.
[62] W. Scott,et al. mu - tau reflection symmetry in lepton mixing and neutrino oscillations , 2002, hep-ph/0210197.
[63] A. Bodek,et al. Higher twist, ξw scaling, and effective LO PDFs for lepton scattering in the few GeV region , 2002, hep-ex/0210024.
[64] S. Kim,et al. Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data , 2002 .
[65] S. Petcov,et al. Neutrinoless double beta decay and neutrino mass spectrum , 2002, hep-ph/0205022.
[66] R. C. Allen,et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.
[67] S. Mrenna,et al. Pythia 6.3 physics and manual , 2003, hep-ph/0308153.
[68] C. Bassin,et al. The Current Limits of resolution for surface wave tomography in North America , 2000 .
[69] The Super-Kamiokande Collaboration,et al. Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.
[70] R. Cousins,et al. A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.
[71] S. Kim,et al. Evidence for oscillation of atmospheric neutrinos , 1998 .
[72] A. Pilaftsis. CP violation and baryogenesis due to heavy Majorana neutrinos , 1997, hep-ph/9707235.
[73] W. Buchmuller,et al. Baryon asymmetry and neutrino mixing , 1996, hep-ph/9608308.
[74] Hayes,et al. Review of Particle Physics. , 1996, Physical review. D, Particles and fields.
[75] Saunders,et al. Reaction and total cross sections for low energy pi + and pi - on isospin zero nuclei. , 1996, Physical review. C, Nuclear physics.
[76] H. A. Varol,et al. Erratum: Human grasping database for activities of daily living with depth, color and kinematic data streams , 2018, Scientific Data.
[77] T. Kuo,et al. Neutrino Oscillations in Matter , 1989 .
[78] Friedman,et al. Low energy pion-nucleus potentials from differential and integral data. , 1989, Physical review. C, Nuclear physics.
[79] E. Oset,et al. Computer simulation of inclusive pion nuclear reactions , 1988 .
[80] M. Fukugita,et al. Baryogenesis without grand unification , 1986 .
[81] D. Ashery,et al. Inclusive pion single-charge-exchange reactions , 1984 .
[82] J. Schiffer,et al. INCLUSIVE PION SCATTERING IN THE DELTA (1232) REGION , 1983 .
[83] D. Barton,et al. Experimental study of the A dependence of inclusive hadron fragmentation , 1983 .
[84] A. Bodek,et al. Further Studies of Fermi Motion Effects in Lepton Scattering from Nuclear Targets , 1981 .
[85] H. J. Pfeiffer,et al. True Absorption and Scattering of Pions on Nuclei , 1981 .
[86] A. E. Buklei,et al. MEASUREMENT OF TOTAL INELASTIC CROSS-SECTIONS FROM PROTON INTERACTIONS WITH NUCLEI IN THE MOMENTUM RANGE FROM 5-GeV/c TO 9-GeV/c AND pi- MESONS WITH NUCLEI IN THE MOMENTUM RANGE FROM 1.75-GeV/c TO 6.5-GeV/c , 1979 .
[87] A. Carroll,et al. Absorption cross section of π +/- , K +/- , p and p on nuclei between 60 and 280 GeV/c , 1979 .
[88] R. Handler,et al. Neutral-strange-particle production by 300-GeV protons , 1978 .
[89] V. Stolin,et al. Total Inelastic Cross-Sections for pi Mesons on Nuclei in the 2-GeV/c to 6-GeV/c Momentum Range , 1977 .
[90] T. Gaisser,et al. On the Relation Between Proton-Proton and Proton-Nucleus Cross Sections at Very High Energies , 1975 .
[91] R. N. Krasnokutsky,et al. Absorption cross sections for pions, kaons, protons and antiprotons on complex nuclei in the 6 to 60 GeV/c momentum range , 1973 .
[92] D. J. Baugh,et al. Pion reaction cross sections and nuclear sizes , 1973 .
[93] R. Dobinson,et al. Total cross-sections of pi-minus, k-minus, and anti-p on protons and deuterons in the momentum range 20-65 gev/c , 1969 .
[94] M. Longo,et al. NUCLEON AND NUCLEAR CROSS SECTIONS FOR POSITIVE PIONS AND PROTONS ABOVE 1.4 Bev/c , 1962 .
[95] J. Cronin,et al. Cross Sections of Nuclei for High-Energy Pions , 1957 .
[96] R. Sternheimer,et al. The density effect for ionization loss in materials , 1952 .