Improved measurement of neutrino oscillation parameters by the NOvA experiment

We present new ν μ → ν e , ν μ → ν μ , ¯ ν μ → ¯ ν e , and ¯ ν μ → ¯ ν μ oscillation measurements by the NOvA experiment, with a 50% increase in neutrino-mode beam exposure over the previously reported results. The additional data, combined with previously published neutrino and antineutrino data, are all analyzed using improved techniques and simulations. A joint fit to the ν e , ν μ , ¯ ν e , and ¯ ν μ candidate samples within the 3-flavor neutrino oscillation framework continues to yield a best-fit point in the normal mass ordering and the upper octant of the θ 23 mixing angle, with Δ m 2 32 ¼ ð 2 . 41 (cid:2) 0 . 07 Þ × 10 − 3 eV 2 and sin 2 θ 23 ¼ 0 . 57 þ 0 . 03 − 0 . 04 . The data disfavor combinations of oscillation parameters that give rise to a large asymmetry in the rates of ν e and ¯ ν e appearance. This includes values of the charge parity symmetry (CP) violating phase in the vicinity of δ CP ¼ π = 2 which are excluded by > 3 σ for the inverted mass ordering, and values around δ CP ¼ 3 π = 2 in the normal ordering which are disfavored at 2 σ confidence.

D. A. Wickremasinghe | A. Aurisano | C. Bromberg | T. Miao | Vasudha Bhatnagar | M. Lokajicek | V. Ryabov | T. Coan | L. Asquith | V. Kus | P. Vokac | D. Whittington | R. Gandrajula | E. Tiras | P. Ding | R. Group | A. Kumar | K. Soustruznik | M. Messier | J. Zálešák | J. Nelson | N. Anfimov | S. Magill | S. Mishra | A. Tsaris | A. Olshevskiy | A. Habig | A. Sheshukov | M. Strait | J. Vasel | B. Bhuyan | S. Mufson | V. Grichine | P. Shanahan | K. Mulder | N. Buchanan | G. Pawloski | M. Wetstein | P. Baldi | W. Mann | A. Norrick | J. Wolcott | F. Gao | O. Klimov | D. Kaplan | H. Gallagher | M. Goodman | V. Matveev | G. Davies | R. Gomes | G. Feldman | F. Hakl | J. Huang | R. Petti | D. Naples | Z. Djurcic | J. Hartnell | E. Smith | P. Filip | M. He | J. Liu | B. Mayes | Y. Torun | E. Arrieta-Diaz | M. Baird | R. Bernstein | J. Bian | R. Hatcher | J. Hewes | A. Himmel | A. Holin | K. Lang | M. Marshak | E. Niner | T. Olson | J. Paley | R. Plunkett | B. Rebel | A. Sousa | L. Suter | J. Urheim | P. Adamson | W. Miller | L. Mualem | R. Nichol | R. Patterson | M. Sanchez | R. Talaga | J. Thomas | P. Vahle | S. Wojcicki | R. Zwaska | L. Cremonesi | P. Rojas | C. Backhouse | B. Bambah | K. Bays | A. Butkevich | E. Catano-Mur | M. Colo | P. Derwent | E. Dukes | H. Duyang | R. Ehrlich | M. Frank | A. Giri | K. Heller | F. Jediný | S. Kotelnikov | H. Meyer | R. Mohanta | A. Moren | M. Muether | A. Norman | F. Psihas | O. Samoylov | J. Smolík | N. Solomey | P. Tas | R. B. Thayyullathil | T. Vrba | S. Zadorozhnyy | W. Wu | M. Judah | L. Aliaga | A. Mislivec | M. A. Acero | A. Booth | S. Calvez | A. Christensen | E. Ewart | J. Franc | B. Jargowsky | L. Koerner | C. Kuruppu | P. Lasorak | A. Lister | M. Plata | W. Mu | N. Nayak | J. Ott | A. Rafique | M. Rajaoalisoa | B. Ramson | P. Snopok | B. T. Oregui | Z. Vallari | M. Wallbank | Y. Xiao | K. Yonehara | T. Warburton | M. Groh | A. Antoshkin | R. Keloth | L. Kolupaeva | T. Nosek | O. Petrova | P. Singh | J. Tripathi | W. A. Mann | T. Thakore | A. Sztuc | I. Kakorin | J. Lesmeister | B. Choudhary | A. Back | T. Carroll | J. Jarosz | N. Balashov | S. S. Falero | T. Lackey | M. Dolce | J. Blair | M. Elkins | S. Bashar | R. Bowles | D. Doyle | A. Hall | C. Kullenberg | M. Kubu | M. Martínez-Casales | A. Morozova | V. Raj | A. Sutton | S. Swain | C. Sweeney | J. Trokan-Tenorio | Y. Yu | Y. Zhang | D. Bhattarai | A. Kalitkina | J. Porter | A. Yankelevich | D. Phan | S. Lin | D. D. Tonguino | H. Hausner | C. Johnson | R. Kralik | H. Oh | A. Y. Dombara | D. P. M'endez | W. Wu | P. Roy | S. Yu | B. Guo | V. Singh

[1]  A. Ashkenazi,et al.  Neutrino-Nucleon Cross-Section Model Tuning in GENIE v3 , 2021, 2104.09179.

[2]  M. Hartz,et al.  Improved constraints on neutrino mixing from the T2K experiment with 3.13×1021 protons on target , 2021, Physical Review D.

[3]  A. Palazzo,et al.  Nonstandard Neutrino Interactions as a Solution to the NOνA and T2K Discrepancy. , 2020, Physical review letters.

[4]  P. Denton,et al.  CP-Violating Neutrino Nonstandard Interactions in Long-Baseline-Accelerator Data. , 2020, Physical review letters.

[5]  M. Groh Constraints on Neutrino Oscillation Parameters from Neutrinos and Antineutrinos with Machine Learning , 2021 .

[6]  K. Kelly,et al.  Neutrino mass ordering in light of recent data , 2020, 2007.08526.

[7]  Astronomy,et al.  Precision Constraints for Three-Flavor Neutrino Oscillations from the Full MINOS+ and MINOS Dataset. , 2020, Physical review letters.

[8]  The Super-Kamiokande Collaboration Publisher Correction: Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations , 2020, Nature.

[9]  Adjusting neutrino interaction models and evaluating uncertainties using NOvA near detector data , 2020, The European Physical Journal C.

[10]  The Super-Kamiokande Collaboration Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations , 2020 .

[11]  M. Hartz,et al.  Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations. , 2019, 1910.03887.

[12]  Prabhjot Singh Extraction of Neutrino Oscillation Parameters using a Simultaneous Fit of $\nu_{\mu}$ Disappearance and $\nu_{e}$ Appearance data with the NOvA Experiment , 2019 .

[13]  Burt Holzman,et al.  Implementation of Feldman-Cousins corrections and oscillation calculations in the HPC environment for the NOvA Experiment , 2019, EPJ Web of Conferences.

[14]  D. P. Méndez,et al.  First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. , 2019, Physical review letters.

[15]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[16]  Ashutosh Kumar Singh,et al.  New constraints on oscillation parameters fromνeappearance andνμdisappearance in the NOvA experiment , 2018, Physical Review D.

[17]  Nuruzzaman,et al.  Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer. , 2018, Physical review letters.

[18]  S. Petcov Discrete flavour symmetries, neutrino mixing and leptonic CP violation , 2017, The European Physical Journal C.

[19]  M. Hartz,et al.  Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV , 2017, 1710.09126.

[20]  J. P. Barron,et al.  Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore , 2017, 1707.07081.

[21]  F. Psihas Measurement of Long Baseline Neutrino Oscillations and Improvements from Deep Learning , 2018 .

[22]  K. Mahn,et al.  Measurement of σaBS and σcX of π+ on carbon by the Dual Use Experiment at TRIUMF (DUET) , 2016 .

[23]  Nuruzzaman,et al.  Neutrino flux predictions for the NuMI beam , 2016, 1607.00704.

[24]  P. Vahle,et al.  A convolutional neural network neutrino event classifier , 2016, ArXiv.

[25]  M. Betancourt,et al.  Deuterium target data for precision neutrino-nucleus cross sections , 2016, 1603.03048.

[26]  R. Hatcher,et al.  The NuMI Neutrino Beam , 2015, 1507.06690.

[27]  R. Hatcher,et al.  The NOvA simulation chain , 2015 .

[28]  Julia Yarba,et al.  The GENIE Neutrino Monte Carlo Generator: Physics and User Manual , 2015, 1510.05494.

[29]  S. King Models of Neutrino Mass, Mixing and CP Violation , 2015, 1510.02091.

[30]  P. Mason,et al.  Liquid scintillator production for the NOvA experiment , 2015, 1504.04035.

[31]  J. Ryckebusch,et al.  Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation , 2014, 1412.4624.

[32]  Jr.,et al.  Measurement of Charged Pion Production Yields off the NuMI Target , 2014, 1404.5882.

[33]  R. Gran,et al.  Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV , 2013, 1307.8105.

[34]  A.Longhin,et al.  T2K neutrino flux prediction , 2012, 1211.0469.

[35]  M. Kowalski,et al.  Inclusive production of protons, anti-protons, neutrons, deuterons and tritons in p+C collisions at 158 GeV/c beam momentum , 2012, The European Physical Journal C.

[36]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[37]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[38]  W. Marsden I and J , 2012 .

[39]  Tejpreet Singh Golan,et al.  Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.

[40]  J. Nieves,et al.  Inclusive charged-current neutrino-nucleus reactions , 2011, 1102.2777.

[41]  for the NA49 collaboration,et al.  Cross Sections and Charged Pion Spectra in Proton-Carbon Interactions at 31 GeV/c , 2011, 1102.0983.

[42]  G. Altarelli,et al.  Discrete Flavor Symmetries and Models of Neutrino Mixing , 2010, 1002.0211.

[43]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[44]  G. Tinti Sterile neutrino oscillations in MINOS and hadron production in pC collisions , 2010 .

[45]  J. Marteau,et al.  Unified approach for nucleon knock-out and coherent and incoherent pion production in neutrino interactions with nuclei , 2009, 0910.2622.

[46]  T. Yang,et al.  A hadronization model for few-GeV neutrino interactions , 2009, 0904.4043.

[47]  C. Berger,et al.  PCAC and coherent pion production by low energy neutrinos , 2008, 0812.2653.

[48]  Hiroshi Nunokawa,et al.  CP violation and neutrino oscillations , 2007, 0710.0554.

[49]  Manfred Lindner,et al.  The NOvA Technical Design Report , 2007 .

[50]  C. Berger,et al.  Lepton mass effects in single pion production by neutrinos , 2007, 0709.4378.

[51]  S. Seun Measurement of pi-K ratios from the NuMI target , 2007 .

[52]  Andre Lebedev,et al.  Ratio of Pion Kaon Production in Proton Carbon Interactions , 2007 .

[53]  P. N. Smith,et al.  Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam. , 2006, Physical review letters.

[54]  R. Mohapatra,et al.  Neutrino Mass and New Physics , 2006, 0910.1778.

[55]  V. Cerný,et al.  Inclusive production of charged pions in p + C collisions at 158 GeV/c beam momentum , 2005, hep-ex/0606028.

[56]  T. Yanagida,et al.  Leptogenesis as the origin of matter , 2005, hep-ph/0502169.

[57]  E. Oset,et al.  Inclusive quasi-elastic neutrino reactions , 2005, nucl-th/0503023.

[58]  H. Murayama,et al.  What can we learn from neutrinoless double beta decay experiments , 2004, hep-ph/0403167.

[59]  P. Bari,et al.  Leptogenesis for pedestrians , 2004, hep-ph/0401240.

[60]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[61]  KamLAND-Zen Collaboration First results from KamLAND: evidence for reactor antineutrino disappearance. , 2002, Physical review letters.

[62]  W. Scott,et al.  mu - tau reflection symmetry in lepton mixing and neutrino oscillations , 2002, hep-ph/0210197.

[63]  A. Bodek,et al.  Higher twist, ξw scaling, and effective LO PDFs for lepton scattering in the few GeV region , 2002, hep-ex/0210024.

[64]  S. Kim,et al.  Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data , 2002 .

[65]  S. Petcov,et al.  Neutrinoless double beta decay and neutrino mass spectrum , 2002, hep-ph/0205022.

[66]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[67]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[68]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[69]  The Super-Kamiokande Collaboration,et al.  Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.

[70]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[71]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[72]  A. Pilaftsis CP violation and baryogenesis due to heavy Majorana neutrinos , 1997, hep-ph/9707235.

[73]  W. Buchmuller,et al.  Baryon asymmetry and neutrino mixing , 1996, hep-ph/9608308.

[74]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[75]  Saunders,et al.  Reaction and total cross sections for low energy pi + and pi - on isospin zero nuclei. , 1996, Physical review. C, Nuclear physics.

[76]  H. A. Varol,et al.  Erratum: Human grasping database for activities of daily living with depth, color and kinematic data streams , 2018, Scientific Data.

[77]  T. Kuo,et al.  Neutrino Oscillations in Matter , 1989 .

[78]  Friedman,et al.  Low energy pion-nucleus potentials from differential and integral data. , 1989, Physical review. C, Nuclear physics.

[79]  E. Oset,et al.  Computer simulation of inclusive pion nuclear reactions , 1988 .

[80]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[81]  D. Ashery,et al.  Inclusive pion single-charge-exchange reactions , 1984 .

[82]  J. Schiffer,et al.  INCLUSIVE PION SCATTERING IN THE DELTA (1232) REGION , 1983 .

[83]  D. Barton,et al.  Experimental study of the A dependence of inclusive hadron fragmentation , 1983 .

[84]  A. Bodek,et al.  Further Studies of Fermi Motion Effects in Lepton Scattering from Nuclear Targets , 1981 .

[85]  H. J. Pfeiffer,et al.  True Absorption and Scattering of Pions on Nuclei , 1981 .

[86]  A. E. Buklei,et al.  MEASUREMENT OF TOTAL INELASTIC CROSS-SECTIONS FROM PROTON INTERACTIONS WITH NUCLEI IN THE MOMENTUM RANGE FROM 5-GeV/c TO 9-GeV/c AND pi- MESONS WITH NUCLEI IN THE MOMENTUM RANGE FROM 1.75-GeV/c TO 6.5-GeV/c , 1979 .

[87]  A. Carroll,et al.  Absorption cross section of π +/- , K +/- , p and p on nuclei between 60 and 280 GeV/c , 1979 .

[88]  R. Handler,et al.  Neutral-strange-particle production by 300-GeV protons , 1978 .

[89]  V. Stolin,et al.  Total Inelastic Cross-Sections for pi Mesons on Nuclei in the 2-GeV/c to 6-GeV/c Momentum Range , 1977 .

[90]  T. Gaisser,et al.  On the Relation Between Proton-Proton and Proton-Nucleus Cross Sections at Very High Energies , 1975 .

[91]  R. N. Krasnokutsky,et al.  Absorption cross sections for pions, kaons, protons and antiprotons on complex nuclei in the 6 to 60 GeV/c momentum range , 1973 .

[92]  D. J. Baugh,et al.  Pion reaction cross sections and nuclear sizes , 1973 .

[93]  R. Dobinson,et al.  Total cross-sections of pi-minus, k-minus, and anti-p on protons and deuterons in the momentum range 20-65 gev/c , 1969 .

[94]  M. Longo,et al.  NUCLEON AND NUCLEAR CROSS SECTIONS FOR POSITIVE PIONS AND PROTONS ABOVE 1.4 Bev/c , 1962 .

[95]  J. Cronin,et al.  Cross Sections of Nuclei for High-Energy Pions , 1957 .

[96]  R. Sternheimer,et al.  The density effect for ionization loss in materials , 1952 .