Guess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting
暂无分享,去创建一个
David J. Kriegman | Nuno Vasconcelos | Oscar Beijbom | Mohammad J. Saberian | D. Kriegman | N. Vasconcelos | Oscar Beijbom | M. Saberian
[1] Pedro M. Domingos. MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.
[2] Li Fei-Fei,et al. ImageNet: A large-scale hierarchical image database , 2009, CVPR.
[3] John Langford,et al. An iterative method for multi-class cost-sensitive learning , 2004, KDD.
[4] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[5] Nuno Vasconcelos,et al. Cost-Sensitive Boosting , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] Michael I. Jordan,et al. Convexity, Classification, and Risk Bounds , 2006 .
[7] Charles Elkan,et al. The Foundations of Cost-Sensitive Learning , 2001, IJCAI.
[8] Pietro Perona,et al. Caltech-UCSD Birds 200 , 2010 .
[9] Salvatore J. Stolfo,et al. AdaCost: Misclassification Cost-Sensitive Boosting , 1999, ICML.
[10] Junhui Wang. Boosting the Generalized Margin in Cost-Sensitive Multiclass Classification , 2013 .
[11] Chunhua Shen,et al. A direct formulation for totally-corrective multi-class boosting , 2011, CVPR 2011.
[12] Yi Lin. Multicategory Support Vector Machines, Theory, and Application to the Classification of . . . , 2003 .
[13] Yoav Freund,et al. Experiments with a New Boosting Algorithm , 1996, ICML.
[14] Steve Branson,et al. Efficient Large-Scale Structured Learning , 2013, CVPR.
[15] Chih-Jen Lin,et al. LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..
[16] Robert E. Schapire,et al. A theory of multiclass boosting , 2010, J. Mach. Learn. Res..
[17] Nuno Vasconcelos,et al. Multiclass Boosting: Theory and Algorithms , 2011, NIPS.
[18] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[19] Pietro Perona,et al. The Fastest Pedestrian Detector in the West , 2010, BMVC.
[20] Paul A. Viola,et al. Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[21] J. Friedman. Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .
[22] Antonio Torralba,et al. Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..
[23] Paul A. Viola,et al. Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade , 2001, NIPS.
[24] David J. Kriegman,et al. Automated annotation of coral reef survey images , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[25] C. Scott. Calibrated asymmetric surrogate losses , 2012 .
[26] Trevor Hastie,et al. Multi-class AdaBoost ∗ , 2009 .
[27] Koby Crammer,et al. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..
[28] Thomas Hofmann,et al. Support vector machine learning for interdependent and structured output spaces , 2004, ICML.
[29] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[30] Peter L. Bartlett,et al. Functional Gradient Techniques for Combining Hypotheses , 2000 .
[31] Naoki Abe,et al. Multi-class cost-sensitive boosting with p-norm loss functions , 2008, KDD.
[32] Yoram Singer,et al. Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.
[33] Ambuj Tewari,et al. On the Consistency of Multiclass Classification Methods , 2007, J. Mach. Learn. Res..
[34] Shivani Agarwal,et al. Classification Calibration Dimension for General Multiclass Losses , 2012, NIPS.
[35] Tong Zhang,et al. Statistical Analysis of Some Multi-Category Large Margin Classification Methods , 2004, J. Mach. Learn. Res..
[36] Mark D. Reid,et al. Composite Multiclass Losses , 2011, J. Mach. Learn. Res..