Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Fully Relativistic Simulations

We follow the collapse in axisymmetry of a uniformly rotating, supermassive star (SMS) to a supermassive black hole in full general relativity. The initial SMS of arbitrary mass M is marginally unstable to radial collapse and rotates at the mass-shedding limit. The collapse proceeds homologously early on and results in the appearance of an apparent horizon at the center. Although our integration terminates before final equilibrium is achieved, we determine that the final black hole will contain about 90% of the total mass of the system and will have a spin parameter J/M2 ~ 0.75. The remaining gas forms a rotating disk about the nascent hole.

[1]  S. Shapiro,et al.  Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Post-Newtonian Simulations , 2002, astro-ph/0202112.

[2]  S. Shapiro,et al.  Gravothermal collapse of self-interacting dark matter halos and the origin of massive black holes. , 2001, Physical review letters.

[3]  M. Umemura A Radiation-Hydrodynamical Model for Supermassive Black Hole-to-Bulge Mass Relation and Quasar Formation , 2001, astro-ph/0108482.

[4]  J. Font,et al.  Spherical collapse of supermassive stars: Neutrino emission and gamma-ray bursts , 2001, astro-ph/0103144.

[5]  S. Shapiro,et al.  Evolution of Differentially Rotating Supermassive Stars to the Onset of Bar Instability , 2000, astro-ph/0010172.

[6]  E.P.J. van den Heuvel,et al.  Black holes in binaries and galactic nuclei , 2001 .

[7]  M. Shibata Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity: Criteria for Prompt Collapse to Black Holes , 2000, gr-qc/0007049.

[8]  S. Shapiro,et al.  Evolution of Rotating Supermassive Stars to the Onset of Collapse , 1999, astro-ph/9909237.

[9]  M. Shibata Fully General Relativistic Simulation of Coalescing Binary Neutron Stars , 1999, gr-qc/9908027.

[10]  M. Shibata Fully general relativistic simulation of merging binary clusters: Spatial gauge condition , 1999, gr-qc/9905058.

[11]  S. Shapiro,et al.  Black Holes and Relativistic Stars and the Man Behind the Legend , 1998 .

[12]  A. Loeb,et al.  Collapse of primordial gas clouds and the formation of quasar black holes , 1994, astro-ph/9401026.

[13]  Seidel,et al.  Towards a singularity-proof scheme in numerical relativity. , 1992, Physical review letters.

[14]  S. Shapiro,et al.  The dynamical evolution of dense star clusters in galactic nuclei , 1990 .

[15]  Cook,et al.  Apparent horizons for boosted or spinning black holes. , 1990, Physical review. D, Particles and fields.

[16]  Tsvi Piran,et al.  A general relativistic code for rotating axisymmetric configurations and gravitational radiation: Numerical methods and tests , 1987 .

[17]  Jonathan Thornburg,et al.  Coordinates and boundary conditions for the general relativistic initial data problem , 1987 .

[18]  S. L. Shapiro,et al.  The collapse of dense star clusters to supermassive black holes: the origin of quasars and AGNs , 1985 .

[19]  M. Rees BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .

[20]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[21]  Stephen V. Weber,et al.  Homologously collapsing stellar cores , 1980 .

[22]  S. L. Shapiro,et al.  Gravitational collapse of supermassive stars to black holes: Numerical solution of the Einstein equations , 1979 .

[23]  M. Rees,et al.  The fate of dense stellar systems , 1978 .

[24]  Y. Zel’dovich,et al.  RELATIVISTIC ASTROPHYSICS. (PART)II. , 1964 .