Effects of Interactions with Cyclic Solvent Molecules on Optical Dephasing of CdSe/ZnS Colloidal Quantum Dots Detected by Femtosecond Four-Wave Mixing Spectroscopy

We have studied the effects of interactions with cyclic solvent molecules on the optical dephasing of CdSe/ZnS colloidal quantum dots (QDs) by femtosecond four-wave mixing spectroscopy. We have found that the interactions with the cyclic solvents without π-bonds result in unexpectedly long dephasing times of QDs even at room temperature, while the interactions with the cyclic solvents including π-bonds make the optical dephasing of QDs extremely fast with a dephasing time of less than our time resolution.

[1]  I. Moreels,et al.  Engineering the Spin–Flip Limited Exciton Dephasing in Colloidal CdSe/CdS Quantum Dots , 2012, ACS nano.

[2]  P. Borri,et al.  Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots. , 2011, Physical review letters.

[3]  V. Biju,et al.  Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. , 2010, Chemical Society reviews.

[4]  V. Biju,et al.  Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles. , 2010, ACS nano.

[5]  John Silcox,et al.  Non-blinking semiconductor nanocrystals , 2009, Nature.

[6]  P. Frantsuzov,et al.  Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. , 2009, Physical review letters.

[7]  H. Itoh,et al.  Slow dephasing and local field effects of exciton–biexciton transition in β-ZnP2 detected by femtosecond degenerate four-wave mixing , 2007 .

[8]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[9]  Y. Kanemitsu,et al.  Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces , 2007 .

[10]  G. Scholes,et al.  Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. , 2006, The Journal of chemical physics.

[11]  Y. Baba,et al.  White-light-emitting CdSe quantum dots synthesized at room temperature , 2006 .

[12]  U. Banin,et al.  Cavity QED with semiconductor nanocrystals , 2006 .

[13]  Marija Drndic,et al.  Efficient polymer-nanocrystal quantum-dot photodetectors , 2005 .

[14]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[15]  Edward H. Sargent,et al.  Luminescence from processible quantum dot-polymer light emitters 1100–1600 nm: Tailoring spectral width and shape , 2004 .

[16]  G. Scholes,et al.  Exciton–bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots , 2003 .

[17]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.

[18]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[19]  Alivisatos,et al.  Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. , 1994, Physical review. B, Condensed matter.

[20]  H. Itoh,et al.  Optical dephasing of organic dye molecules doped in cross‐linked polyvinyl alcohol derivatives: Incoherent photon echo and hole‐burning studies , 1994 .

[21]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[22]  R. Schoenlein,et al.  Investigation of femtosecond electronic dephasing in CdSe nanocrystals using quantum-beat-suppressed photon echoes. , 1993, Physical review letters.

[23]  François Hache,et al.  Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions , 1993 .

[24]  Shaul Mukamel,et al.  Photon echoes of polyatomic molecules in condensed phases , 1991 .

[25]  S. Mukamel,et al.  Unified theory of photon echoes: The passage from inhomogeneous to homogeneous line broadening , 1985 .