Impact of intraspecific variation in insect microbiomes on host phenotype and evolution

[1]  S. Boyer,et al.  How hindgut microbiota may shape sympatric speciation in an invasive phytophagous scarab , 2023, Entomologia Experimentalis et Applicata.

[2]  K. Khandagale,et al.  Role of gut symbionts of insect pests: A novel target for insect-pest control , 2023, Frontiers in Microbiology.

[3]  A. Jouraku,et al.  A male-killing gene encoded by a symbiotic virus of Drosophila , 2023, Nature Communications.

[4]  T. Esko,et al.  Impact of the gut microbiota and associated metabolites on cardiometabolic traits, chronic diseases and human longevity: a Mendelian randomization study , 2023, Journal of Translational Medicine.

[5]  M. Strand,et al.  An aphid symbiont confers protection against a specialized RNA virus, another increases vulnerability to the same pathogen , 2022, Molecular ecology.

[6]  Eric R. L. Gordon,et al.  Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids , 2022, Scientific Reports.

[7]  M. Montagna,et al.  Biotic and abiotic factors affecting the microbiota of Chrysomelidae inhabiting wetland vegetation , 2022, Hydrobiologia.

[8]  H. Delatte,et al.  Enterobactereaceae symbiont as facilitators of biological invasion: review of Tephritidae fruit flies , 2022, Biological Invasions.

[9]  R. Colwell,et al.  Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X , 2022, Scientific Reports.

[10]  C. Huttenhower,et al.  Microbiome epidemiology and association studies in human health , 2022, Nature Reviews Genetics.

[11]  S. Prober,et al.  Termite sensitivity to temperature affects global wood decay rates , 2022, Science.

[12]  M. Kaltenpoth,et al.  Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages , 2022, The ISME Journal.

[13]  C. Valiente Moro,et al.  Crosstalk between the microbiota and insect postembryonic development. , 2022, Trends in microbiology.

[14]  J. Lloyd,et al.  Does Host Plant Drive Variation in Microbial Gut Communities in a Recently Shifted Pest? , 2022, Microbial Ecology.

[15]  H. Colinet,et al.  How the mighty have adapted: Genetic and microbiome changes during laboratory adaptation in the key pest Drosophila suzukii , 2022, Entomologia generalis.

[16]  K. Bourtzis,et al.  Eating eggplants as a cucurbit feeder: Dietary shifts affect the gut microbiome of the melon fly Zeugodacus cucurbitae (Diptera, Tephritidae) , 2022, MicrobiologyOpen.

[17]  Lin Jintian,et al.  The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables , 2022, Scientific Reports.

[18]  C. Welte,et al.  The secret life of insect-associated microbes and how they shape insect–plant interactions , 2022, FEMS microbiology ecology.

[19]  Xingmeng Lu,et al.  Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects , 2022, Microorganisms.

[20]  R. Maciel-de-Freitas,et al.  Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites , 2022, bioRxiv.

[21]  Chengshu Wang,et al.  Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections , 2022, iScience.

[22]  U. Mueller,et al.  Microbiome breeding: conceptual and practical issues. , 2022, Trends in microbiology.

[23]  Jeffrey E. Barrick,et al.  Honey bee functional genomics using symbiont-mediated RNAi , 2022, bioRxiv.

[24]  N. Lemoine,et al.  Thank you for biting: dispersal of beneficial microbiota through 'antagonistic' interactions. , 2022, Trends in microbiology.

[25]  J. Ayroles,et al.  Publisher Correction: Natural selection for imprecise vertical transmission in host–microbiota systems , 2022, Nature Ecology & Evolution.

[26]  J. Michaud,et al.  Symbiotic bacteria on the cuticle protect the oriental fruit moth Grapholita molesta from fungal infection , 2022, Biological Control.

[27]  Fan Zhang,et al.  The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori , 2022, Pest management science.

[28]  Pieter B. T. Neerincx,et al.  Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project , 2022, Nature Genetics.

[29]  C. Vorburger,et al.  Similar cost of Hamiltonella defensa in experimental and natural aphid‐endosymbiont associations , 2022, Ecology and evolution.

[30]  Carina Davis,et al.  Depth-structuring of multi-kingdom soil communities in agricultural pastures. , 2021, FEMS Microbiology Ecology.

[31]  M. Goberna,et al.  Cautionary notes on the use of co-occurrence networks in soil ecology , 2021, Soil Biology and Biochemistry.

[32]  A. Malacrinò Host species identity shapes the diversity and structure of insect microbiota. , 2021, Molecular ecology.

[33]  H. Jacquemyn,et al.  Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars , 2021, Animal Microbiome.

[34]  M. Kaltenpoth,et al.  Transmission of Bacterial Symbionts With and Without Genome Erosion Between a Beetle Host and the Plant Environment , 2021, Frontiers in Microbiology.

[35]  Camila Carlos-Shanley,et al.  The effects of captivity on the microbiome of the endangered Comal Springs riffle beetle (Heterelmis comalensis). , 2021, FEMS microbiology letters.

[36]  J. Ayroles,et al.  The microbiome extends host evolutionary potential , 2021, Nature Communications.

[37]  Karoline Faust Open challenges for microbial network construction and analysis , 2021, The ISME Journal.

[38]  Jeffrey E. Barrick,et al.  Engineering insects from the endosymbiont out. , 2021, Trends in microbiology.

[39]  C. Currie,et al.  Experimental Warming Reduces Survival, Cold Tolerance, and Gut Prokaryotic Diversity of the Eastern Subterranean Termite, Reticulitermes flavipes (Kollar) , 2021, Frontiers in Microbiology.

[40]  O. Martin,et al.  Scent of a killer: How could killer yeast boost its dispersal? , 2021, Ecology and evolution.

[41]  D. Hughes,et al.  Insect Behavioral Change and the Potential Contributions of Neuroinflammation—A Call for Future Research , 2021, Genes.

[42]  S. Zytynska,et al.  Benefits and costs of hosting facultative symbionts in plant‐sucking insects: A meta‐analysis , 2021, Molecular ecology.

[43]  E. Decaestecker,et al.  Locally adapted gut microbiomes mediate host stress tolerance , 2021, The ISME Journal.

[44]  A. Iyer-Pascuzzi,et al.  Emerging strategies for precision microbiome management in diverse agroecosystems , 2021, Nature Plants.

[45]  Zheng-Liang Wang,et al.  Host-Plant Induced Shifts in Microbial Community Structure in Small Brown Planthopper, Laodelphax striatellus (Homoptera: Delphacidae) , 2021, Journal of Economic Entomology.

[46]  B. Moumen,et al.  Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod , 2021, Microorganisms.

[47]  Daifeng Cheng,et al.  Rectal bacteria produce sex pheromones in the male oriental fruit fly , 2020, Current Biology.

[48]  B. Hassan,et al.  Vertically Transmitted Gut Bacteria and Nutrition Influence the Immunity and Fitness of Bactrocera dorsalis Larvae , 2020, Frontiers in Microbiology.

[49]  F. Beran,et al.  Gut microbiota degrades toxic isothiocyanates in a flea beetle pest , 2020, Molecular ecology.

[50]  J. Gómez‐Zurita,et al.  Food Resource Sharing of Alder Leaf Beetle Specialists (Coleoptera: Chrysomelidae) as Potential Insect–Plant Interface for Horizontal Transmission of Endosymbionts , 2020, Environmental entomology.

[51]  S. Nair,et al.  Dynamics of Insect–Microbiome Interaction Influence Host and Microbial Symbiont , 2020, Frontiers in Microbiology.

[52]  C. Mason Complex Relationships at the Intersection of Insect Gut Microbiomes and Plant Defenses , 2020, Journal of Chemical Ecology.

[53]  J. Consuegra,et al.  Metabolic Cooperation among Commensal Bacteria Supports Drosophila Juvenile Growth under Nutritional Stress , 2020, bioRxiv.

[54]  Y. Kikuchi,et al.  Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts , 2020, The ISME Journal.

[55]  Jeffrey E. Barrick,et al.  Engineered symbionts activate honey bee immunity and limit pathogens , 2020, Science.

[56]  C. Jackson,et al.  Effects of Life Stage, Site, and Species on the Dragonfly Gut Microbiome , 2020, Microorganisms.

[57]  X. Jing,et al.  Insect Sterol Nutrition: Physiological Mechanisms, Ecology, and Applications. , 2020, Annual review of entomology.

[58]  S. Morin,et al.  Inside out: microbiota dynamics during host-plant adaptation of whiteflies , 2020, The ISME Journal.

[59]  E. Pierson,et al.  Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere , 2019, PloS one.

[60]  J. Hrček,et al.  Metacommunity theory for transmission of heritable symbionts within insect communities , 2019, Ecology and evolution.

[61]  P. Alifano,et al.  Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants , 2019, Insects.

[62]  Kaiyun Fu,et al.  Geographically isolated Colorado potato beetle mediating distinct defense responses in potato is associated with the alteration of gut microbiota , 2019, Journal of Pest Science.

[63]  S. Reynolds,et al.  Complete metamorphosis of insects , 2019, Philosophical Transactions of the Royal Society B.

[64]  G. Tikhonov,et al.  The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant , 2019, Environmental microbiology.

[65]  N. Baliga,et al.  Use and abuse of correlation analyses in microbial ecology , 2019, The ISME Journal.

[66]  Zakee L Sabree,et al.  Conspecific coprophagy stimulates normal development in a germ-free model invertebrate , 2019, PeerJ.

[67]  A. Douglas,et al.  The hemolymph microbiome of insects. , 2019, Journal of insect physiology.

[68]  A. McLean,et al.  Cascading effects of defensive endosymbionts. , 2019, Current opinion in insect science.

[69]  M. Mazur,et al.  How Hosts Taxonomy, Trophy, and Endosymbionts Shape Microbiome Diversity in Beetles , 2019, Microbial Ecology.

[70]  T. M. Bezemer,et al.  Foliar-feeding insects acquire microbiomes from the soil rather than the host plant , 2019, Nature Communications.

[71]  M. Knaden,et al.  Gut microbiota affects development and olfactory behavior in Drosophila melanogaster , 2019, Journal of Experimental Biology.

[72]  C. Vorburger,et al.  Estimating costs of aphid resistance to parasitoids conferred by a protective strain of the bacterial endosymbiont Regiella insecticola , 2019, Entomologia Experimentalis et Applicata.

[73]  G. Felton,et al.  Host plant and population source drive diversity of microbial gut communities in two polyphagous insects , 2019, Scientific Reports.

[74]  M. Schwarzländer,et al.  How Safe Is Weed Biological Control? A Global Review of Direct Nontarget Attack , 2019, The Quarterly Review of Biology.

[75]  A. Moczek,et al.  Transgenerational developmental effects of species‐specific, maternally transmitted microbiota in Onthophagus dung beetles , 2018, Ecological Entomology.

[76]  P. Rossi,et al.  Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing , 2018, BMC Microbiology.

[77]  G. Felton,et al.  Co-option of microbial associates by insects and their impact on plant-folivore interactions. , 2018, Plant, cell & environment.

[78]  M. Kaltenpoth,et al.  The cotton stainer's gut microbiota suppresses infection of a cotransmitted trypanosomatid parasite , 2018, Molecular ecology.

[79]  M. Traugott,et al.  Facultative bacterial endosymbionts shape parasitoid food webs in natural host populations: A correlative analysis , 2018, The Journal of animal ecology.

[80]  M. Kaltenpoth,et al.  An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles , 2018, Nature Communications.

[81]  G. Felton,et al.  Gut-Associated Bacteria of Helicoverpa zea Indirectly Trigger Plant Defenses in Maize , 2018, Journal of Chemical Ecology.

[82]  T. New Promoting and developing insect conservation in Australia's urban environments , 2018 .

[83]  C. Vorburger,et al.  Defensive symbionts mediate species coexistence in phytophagous insects , 2018 .

[84]  M. Kaltenpoth,et al.  Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host , 2018, Front. Microbiol..

[85]  Laura J. Kraft,et al.  Multi‐modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism , 2018, The Journal of animal ecology.

[86]  K. McMahon,et al.  Gut microbiomes of mobile predators vary with landscape context and species identity , 2017, Ecology and evolution.

[87]  A. B. Dennis,et al.  Rapid evolution of symbiont‐mediated resistance compromises biological control of aphids by parasitoids , 2017, Evolutionary applications.

[88]  M. Kaltenpoth,et al.  Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia , 2017, Environmental microbiology.

[89]  C. Kost,et al.  Symbiont Acquisition and Replacement as a Source of Ecological Innovation. , 2017, Trends in microbiology.

[90]  G. Felton,et al.  Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). , 2017, The New phytologist.

[91]  M. Kaltenpoth,et al.  Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism , 2017, Nature Communications.

[92]  F. L. Cônsoli,et al.  The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation , 2017, PloS one.

[93]  H. Godfray,et al.  Symbionts modify interactions between insects and natural enemies in the field , 2016, The Journal of animal ecology.

[94]  Vivek Kempraj,et al.  Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis , 2016, Microbial Ecology.

[95]  A. Latorre,et al.  The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp. , 2016, Front. Microbiol..

[96]  D. Marshall,et al.  Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland , 2016, The Science of Nature.

[97]  J. Harmon,et al.  Specificity of Multi-Modal Aphid Defenses against Two Rival Parasitoids , 2016, PloS one.

[98]  D. Wheeler,et al.  A bacterial filter protects and structures the gut microbiome of an insect , 2016, The ISME Journal.

[99]  A. Lizé,et al.  Insect behaviour and the microbiome. , 2015, Current opinion in insect science.

[100]  M. Bowers,et al.  Gut microbes may facilitate insect herbivory of chemically defended plants , 2015, Oecologia.

[101]  Piotr Łukasik,et al.  Patterns, causes and consequences of defensive microbiome dynamics across multiple scales , 2015, Molecular ecology.

[102]  F. Jiggins,et al.  The Intracellular Bacterium Wolbachia Uses Parasitoid Wasps as Phoretic Vectors for Efficient Horizontal Transmission , 2015, PLoS pathogens.

[103]  S. Shigenobu,et al.  Symbiont-Supplemented Maternal Investment Underpinning Host’s Ecological Adaptation , 2014, Current Biology.

[104]  N. Kremer,et al.  Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. , 2014, Current opinion in insect science.

[105]  S. Lata,et al.  Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies , 2014, Parasites & Vectors.

[106]  K. Raffa,et al.  Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator , 2014, Oecologia.

[107]  J. Seger,et al.  Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis , 2014, Proceedings of the National Academy of Sciences.

[108]  J. Russell,et al.  Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond , 2014 .

[109]  Lynn Y. Huynh,et al.  Population genomics of a symbiont in the early stages of a pest invasion , 2014, Molecular ecology.

[110]  S. Boyer,et al.  Invasion success of a scarab beetle within its native range: host range expansion versus host-shift , 2014, PeerJ.

[111]  N. Fierer,et al.  Metamorphosis of a Butterfly-Associated Bacterial Community , 2014, PloS one.

[112]  N. Moran,et al.  The gut microbiota of insects - diversity in structure and function. , 2013, FEMS microbiology reviews.

[113]  J. Bohlmann,et al.  Bacteria Associated with a Tree-Killing Insect Reduce Concentrations of Plant Defense Compounds , 2013, Journal of Chemical Ecology.

[114]  J. Gershenzon,et al.  A Common Fungal Associate of the Spruce Bark Beetle Metabolizes the Stilbene Defenses of Norway Spruce1[C][W][OA] , 2013, Plant Physiology.

[115]  N. Fierer,et al.  A Cross-Taxon Analysis of Insect-Associated Bacterial Diversity , 2013, PloS one.

[116]  C. Cloutier,et al.  Survival to Parasitoids in an Insect Hosting Defensive Symbionts: A Multivariate Approach to Polymorphic Traits Affecting Host Use by Its Natural Enemy , 2013, PloS one.

[117]  K. Reinhardt,et al.  In vitro antimicrobial sperm protection by an ejaculate‐like substance , 2013 .

[118]  H. Godfray,et al.  Unrelated facultative endosymbionts protect aphids against a fungal pathogen. , 2013, Ecology letters.

[119]  M. A. Berbert-Molina,et al.  Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.) , 2011, Parasites & Vectors.

[120]  F. Vavre,et al.  Bacterial symbionts in insects or the story of communities affecting communities , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[121]  T. Fukatsu,et al.  Interspecific symbiont transfection confers a novel ecological trait to the recipient insect , 2011, Biology Letters.

[122]  Robert L. Unckless,et al.  Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont , 2010, Science.

[123]  Bernd Schneider,et al.  Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. , 2010, Nature chemical biology.

[124]  M. Kaltenpoth,et al.  Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs. , 2009, FEMS microbiology ecology.

[125]  N. Moran,et al.  Bacteriophages Encode Factors Required for Protection in a Symbiotic Mutualism , 2009, Science.

[126]  A. Douglas The microbial dimension in insect nutritional ecology , 2009 .

[127]  P. Abbot,et al.  Phytophagous Insect–Microbe Mutualisms and Adaptive Evolutionary Diversification , 2008, Evolution; international journal of organic evolution.

[128]  M. S. Hunter,et al.  Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium Cardinium , 2007, Journal of evolutionary biology.

[129]  R. Vos,et al.  Western flower thrips (Thysanoptera: Thripidae) preference for thrips-damaged leaves over fresh leaves enables uptake of symbiotic gut bacteria , 2006 .

[130]  H. Godfray,et al.  Aphid Protected from Pathogen by Endosymbiont , 2005, Science.

[131]  N. Moran,et al.  Variation in resistance to parasitism in aphids is due to symbionts not host genotype. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[132]  M. Kaltenpoth,et al.  Symbiotic Bacteria Protect Wasp Larvae from Fungal Infestation , 2005, Current Biology.

[133]  N. Moran,et al.  Facultative bacterial symbionts in aphids confer resistance to parasitic wasps , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[134]  M. Hochberg,et al.  Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[135]  A. Mulcock,et al.  Production of an Insect Sex Attractant by Symbiotic Bacteria , 1971, Nature.

[136]  C. Vorburger Symbiont-conferred resistance to parasitoids in aphids – Challenges for biological control , 2018 .