Selection and characterization of small random transmembrane proteins that bind and activate the platelet-derived growth factor beta receptor.

[1]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[2]  Lingling Wu,et al.  Endogenous Human Papillomavirus E6 and E7 Proteins Differentially Regulate Proliferation, Senescence, and Apoptosis in HeLa Cervical Carcinoma Cells , 2003, Journal of Virology.

[3]  L. Petti,et al.  Molecular Examination of the Transmembrane Requirements of the Platelet-derived Growth Factor β Receptor for a Productive Interaction with the Bovine Papillomavirus E5 Oncoprotein* , 2002, The Journal of Biological Chemistry.

[4]  L. Petti,et al.  Multiple Transmembrane Amino Acid Requirements Suggest a Highly Specific Interaction between the Bovine Papillomavirus E5 Oncoprotein and the Platelet-Derived Growth Factor Beta Receptor , 2002, Journal of Virology.

[5]  I. Sunitha,et al.  c-Src Activation by the E5 oncoprotein enables transformation independently of PDGF receptor activation , 2002, Oncogene.

[6]  J. Doyon,et al.  Identification of the transmembrane dimer interface of the bovine papillomavirus E5 protein , 2001, Oncogene.

[7]  D. Engelman,et al.  Polar residues drive association of polyleucine transmembrane helices , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. DeGrado,et al.  Polar side chains drive the association of model transmembrane peptides. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Ming-Ming Zhou Phosphothreonine recognition comes into focus , 2000, Nature Structural Biology.

[10]  A. N. Meyer,et al.  Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase. , 2000, Molecular biology of the cell.

[11]  B. Walker,et al.  Unusual Polymorphisms in Human Immunodeficiency Virus Type 1 Associated with Nonprogressive Infection , 2000, Journal of Virology.

[12]  D. DiMaio,et al.  Bovine Papillomavirus E5 Protein Induces the Formation of Signal Transduction Complexes Containing Dimeric Activated Platelet-derived Growth Factor β Receptor and Associated Signaling Proteins* , 2000, The Journal of Biological Chemistry.

[13]  William F. DeGrado,et al.  Asparagine-mediated self-association of a model transmembrane helix , 2000, Nature Structural Biology.

[14]  D. Engelman,et al.  Interhelical hydrogen bonding drives strong interactions in membrane proteins , 2000, Nature Structural Biology.

[15]  R. Schlegel,et al.  The Transmembrane Domain of the E5 Oncoprotein Contains Functionally Discrete Helical Faces* , 1999, The Journal of Biological Chemistry.

[16]  D. Langosch,et al.  A Heptad Motif of Leucine Residues Found in Membrane Proteins Can Drive Self-assembly of Artificial Transmembrane Segments* , 1999, The Journal of Biological Chemistry.

[17]  D. DiMaio,et al.  The Bovine Papillomavirus E5 Protein Requires a Juxtamembrane Negative Charge for Activation of the Platelet-Derived Growth Factor β Receptor and Transformation of C127 Cells , 1999, Journal of Virology.

[18]  D. Engelman,et al.  TOXCAT: a measure of transmembrane helix association in a biological membrane. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. DiMaio,et al.  Bovine papillomavirus E5 protein induces oligomerization and trans-phosphorylation of the platelet-derived growth factor beta receptor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. O. Smith,et al.  Structural models of the bovine papillomavirus E5 protein , 1998, Proteins.

[21]  T. Surti,et al.  Role of Glutamine 17 of the Bovine Papillomavirus E5 Protein in Platelet-Derived Growth Factor β Receptor Activation and Cell Transformation , 1998, Journal of Virology.

[22]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[23]  S. O. Smith,et al.  Identification of amino acids in the transmembrane and juxtamembrane domains of the platelet-derived growth factor receptor required for productive interaction with the bovine papillomavirus E5 protein , 1997, Journal of virology.

[24]  D. Engelman,et al.  Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation , 1997, Oncogene.

[25]  D. Engelman,et al.  Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching , 1996, Proteins.

[26]  R. Schlegel,et al.  E5 oncoprotein transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton protein binding and platelet-derived growth factor receptor binding and phosphorylation , 1996, Journal of virology.

[27]  J. Pierce,et al.  Mutational analysis of the beta-type platelet-derived growth factor receptor defines the site of interaction with the bovine papillomavirus type 1 E5 transforming protein , 1995, Journal of virology.

[28]  D. DiMaio,et al.  Mutational analysis of the interaction between the bovine papillomavirus E5 transforming protein and the endogenous beta receptor for platelet-derived growth factor in mouse C127 cells , 1995, Journal of virology.

[29]  D. Kendall,et al.  Artificial Transmembrane Segments. , 1995, The Journal of Biological Chemistry.

[30]  D. DiMaio,et al.  Ligand-independent activation of the platelet-derived growth factor beta receptor: requirements for bovine papillomavirus E5-induced mitogenic signaling , 1995, Molecular and cellular biology.

[31]  Paul D. Adams,et al.  Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban , 1995, Nature Structural Biology.

[32]  S. Aaronson,et al.  The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for the platelet-derived growth factor but not other related tyrosine kinase-containing receptors to induce cellular transformation , 1994, Journal of virology.

[33]  D. DiMaio,et al.  Specific interaction between the bovine papillomavirus E5 transforming protein and the beta receptor for platelet-derived growth factor in stably transformed and acutely transfected cells , 1994, Journal of virology.

[34]  A. N. Meyer,et al.  Cellular transformation by a transmembrane peptide: structural requirements for the bovine papillomavirus E5 oncoprotein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[35]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[36]  D. Lowy,et al.  The conserved C-terminal domain of the bovine papillomavirus E5 oncoprotein can associate with an alpha-adaptin-like molecule: a possible link between growth factor receptors and viral transformation , 1993, Molecular and cellular biology.

[37]  D. DiMaio,et al.  Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein , 1993, Molecular and cellular biology.

[38]  R. Schlegel,et al.  The BPV‐1 E5 protein, the 16 kDa membrane pore‐forming protein and the PDGF receptor exist in a complex that is dependent on hydrophobic transmembrane interactions. , 1992, The EMBO journal.

[39]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[40]  D. DiMaio,et al.  Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. DiMaio,et al.  The central hydrophobic domain of the bovine papillomavirus E5 transforming protein can be functionally replaced by many hydrophobic amino acid sequences containing a glutamine , 1992, Journal of virology.

[42]  D. DiMaio,et al.  Biological properties of the deer papillomavirus E5 gene in mouse C127 cells: growth transformation, induction of DNA synthesis, and activation of the platelet-derived growth factor receptor , 1991, Journal of virology.

[43]  D. DiMaio,et al.  Activation of the platelet‐derived growth factor receptor by the bovine papillomavirus E5 transforming protein. , 1991, The EMBO journal.

[44]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[45]  D. DiMaio,et al.  Transforming activity of a 16-amino-acid segment of the bovine papillomavirus E5 protein linked to random sequences of hydrophobic amino acids , 1989, Journal of virology.

[46]  M. Willingham,et al.  The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. , 1989, Virology.

[47]  D. DiMaio,et al.  44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids , 1988, Molecular and cellular biology.

[48]  R. Schlegel,et al.  The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide. , 1986, Science.

[49]  D. DiMaio,et al.  Translation of open reading frame E5 of bovine papillomavirus is required for its transforming activity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[50]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[51]  I. Verma,et al.  Two base changes restore infectivity to a noninfectious molecular clone of Moloney murine leukemia virus (pMLV-1) , 1984, Journal of virology.

[52]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[53]  Ch Lai,et al.  Virocrine transformation: the intersection between viral transforming proteins and cellular signal transduction pathways. , 1998, Annual review of microbiology.