Bayesian factor analysis for multilevel binary observations

Multilevel covariance structure models have become increasingly popular in the psychometric literature in the past few years to account for population heterogeneity and complex study designs. We develop practical simulation based procedures for Bayesian inference of multilevel binary factor analysis models. We illustrate how Markov Chain Monte Carlo procedures such as Gibbs sampling and Metropolis-Hastings methods can be used to perform Bayesian inference, model checking and model comparison without the need for multidimensional numerical integration. We illustrate the proposed estimation methods using three simulation studies and an application involving student's achievement results in different areas of mathematics.

[1]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[2]  D. K. Dey,et al.  BAYESIAN MODELING OF CORRELATED BINARY RESPONSES VIA SCALE MIXTURE OF MULTIVARIATE NORMAL LINK FUNCTIONS , 1998 .

[3]  B. Muthén Contributions to factor analysis of dichotomous variables , 1978 .

[4]  B. Schmeiser,et al.  Performance of the Gibbs, Hit-and-Run, and Metropolis Samplers , 1993 .

[5]  Kanti V. Mardia,et al.  Families of Bivariate Distributions , 1970 .

[6]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[7]  Bengt Muthén,et al.  MULTILEVEL ASPECTS OF VARYING PARAMETERS IN STRUCTURAL MODELS , 1989 .

[8]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[9]  B. Muthén,et al.  A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm , 1998 .

[10]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[11]  Sik-Yum Lee A bayesian approach to confirmatory factor analysis , 1981 .

[12]  D. J. Bartholomew Scaling Binary Data Using a Factor Model , 1984 .

[13]  Anders Christoffersson,et al.  Factor analysis of dichotomized variables , 1975 .

[14]  Bengt Muthén,et al.  A Structural Probit Model with Latent Variables , 1979 .

[15]  R D Bock,et al.  High-dimensional multivariate probit analysis. , 1996, Biometrics.

[16]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  D. J. Bartholomew,et al.  Factor Analysis for Categorical Data , 1980 .

[18]  D. Bartholomew Latent Variable Models And Factor Analysis , 1987 .

[19]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[20]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[21]  Bengt Muthén,et al.  Using item-specific instructional information in achievement modeling , 1989 .

[22]  B. Muthén,et al.  Multilevel Covariance Structure Analysis , 1994 .

[23]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[24]  Nicholas T. Longford,et al.  Factor analysis for clustered observations , 1992 .

[25]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[26]  Sik-Yum Lee,et al.  A bayesian estimation of factor score in confirmatory factor model with polytomous, censored or truncated data , 1997 .

[27]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[28]  B. Muthén Latent variable modeling in heterogeneous populations , 1989 .

[29]  R. Chambers Correlation coefficients from 2 × 2 tables and from biserial data , 1982 .

[30]  D. Bartholomew Posterior analysis of the factor model , 1981 .

[31]  Harvey Goldstein,et al.  A general model for the analysis of multilevel data , 1988 .

[32]  F. Joe Crosswhite,et al.  Second International Mathematics Study. Summary Report for the United States. Contractor's Report. , 1985 .

[33]  B. Muthén A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators , 1984 .

[34]  S. Chib,et al.  Bayesian residual analysis for binary response regression models , 1995 .

[35]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[36]  Harvey Goldstein,et al.  Balanced versus unbalanced designs for linear structural relations in two‐level data , 1989 .

[37]  Bengt Muthén,et al.  Simultaneous factor analysis of dichotomous variables in several groups , 1981 .

[38]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[39]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[40]  Alan E. Gelfand,et al.  Model Determination using sampling-based methods , 1996 .

[41]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[42]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[43]  S. Sahu Bayesian Estimation and Model Choice in Item Response Models , 2002 .

[44]  On Bayesian estimation in unrestricted factor analysis , 1978 .

[45]  R. P. McDonald,et al.  Bayesian estimation in unrestricted factor analysis: A treatment for heywood cases , 1975 .