Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting

[1]  B. Yang,et al.  Single crystalline TiO2 nanorods with enhanced visible light activity for solar hydrogen generation , 2013 .

[2]  Guangjin Zhang,et al.  Polyoxometalate–CdS quantum dots co-sensitized TiO2 nanorods array: enhanced charge separation and light to electricity conversion efficiency , 2013 .

[3]  Tianjin Zhang,et al.  Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer , 2013 .

[4]  G. Cao,et al.  Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film , 2012 .

[5]  Allen J. Bard,et al.  Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. , 2012, Nano letters.

[6]  K. Hashimoto,et al.  Cu(II) Oxide Amorphous Nanoclusters Grafted Ti3+ Self-Doped TiO2: An Efficient Visible Light Photocatalyst , 2011 .

[7]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[8]  P. Schmuki,et al.  Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. , 2011, Nanoscale.

[9]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[10]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[11]  Zhonghai Zhang,et al.  Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation , 2010 .

[12]  E. Selli,et al.  Photocatalytic degradation of organic molecules in water: Photoactivity and reaction paths in relation to TiO2 particles features , 2010 .

[13]  Dionysios D. Dionysiou,et al.  TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation , 2010 .

[14]  Y. Masuda,et al.  Multineedle TiO2 Nanostructures, Self-Assembled Surface Coatings, and Their Novel Properties , 2010 .

[15]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[16]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[17]  J. Yi,et al.  Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid , 2009 .

[18]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[19]  O. Srivastava,et al.  On the synthesis, characterization and photocatalytic applications of nanostructured TiO2 , 2008 .

[20]  L. Palmisano,et al.  Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions , 2008 .

[21]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[22]  Jinlong Zhang,et al.  Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water , 2004 .

[23]  P. F. Greenfield,et al.  Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water , 2000 .

[24]  N. Wu,et al.  Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides. , 1999, Science.

[25]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[26]  H. Tada,et al.  Dependence of TiO2 Photocatalytic Activity upon Its Film Thickness , 1997 .

[27]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[28]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[29]  K. Tanaka,et al.  Photocatalytic degradation of pollutant over TiO2 in different crystal structures , 1993 .

[30]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[31]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[32]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[33]  M. Grätzel Photoelectrochemical cells , 2001, Nature.

[34]  P. Kamat PHOTOCHEMISTRY ON NONREACTIVE AND REACTIVE (SEMICONDUCTOR) SURFACES , 1993 .