Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.

Solving the Kohn-Sham eigenvalue problem constitutes the most computationally expensive part in self-consistent density functional theory (DFT) calculations. In a previous paper, we have proposed a nonlinear Chebyshev-filtered subspace iteration method, which avoids computing explicit eigenvectors except at the first self-consistent-field (SCF) iteration. The method may be viewed as an approach to solve the original nonlinear Kohn-Sham equation by a nonlinear subspace iteration technique, without emphasizing the intermediate linearized Kohn-Sham eigenvalue problems. It reaches self-consistency within a similar number of SCF iterations as eigensolver-based approaches. However, replacing the standard diagonalization at each SCF iteration by a Chebyshev subspace filtering step results in a significant speedup over methods based on standard diagonalization. Here, we discuss an approach for implementing this method in multi-processor, parallel environment. Numerical results are presented to show that the method enables to perform a class of highly challenging DFT calculations that were not feasible before.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  F. L. Bauer Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .

[3]  J. C. Phillips,et al.  Energy-Band Interpolation Scheme Based on a Pseudopotential , 1958 .

[4]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[5]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[6]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[7]  H. Rutishauser Computational aspects of F. L. Bauer's simultaneous iteration method , 1969 .

[8]  H. Rutishauser Simultaneous iteration method for symmetric matrices , 1970 .

[9]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[10]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[11]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[12]  P. Giannozzi,et al.  Towards Very Large-Scale Electronic-Structure Calculations , 1992 .

[13]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[14]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[15]  Wu,et al.  Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.

[16]  Sankey,et al.  Projected random vectors and the recursion method in the electronic-structure problem. , 1994, Physical review. B, Condensed matter.

[17]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[18]  Colombo,et al.  Efficient linear scaling algorithm for tight-binding molecular dynamics. , 1994, Physical review letters.

[19]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[20]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[21]  R. Nieminen,et al.  Real-space electronic-structure calculations: Combination of the finite-difference and conjugate-gradient methods. , 1995, Physical review. B, Condensed matter.

[22]  A. Stathopoulos,et al.  Solution of large eigenvalue problems in electronic structure calculations , 1996 .

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  Martin Head-Gordon,et al.  Chebyshev expansion methods for electronic structure calculations on large molecular systems , 1997 .

[25]  R. Baer,et al.  Electronic structure of large systems: Coping with small gaps using the energy renormalization group method , 1998 .

[26]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[27]  Richard M. Martin,et al.  Improved accuracy and acceleration of variational order-N electronic-structure computations by projection techniques , 1998 .

[28]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[29]  Y. Saad,et al.  Electronic structure calculations for plane-wave codes without diagonalization , 1999 .

[30]  K Wu,et al.  Thick-Restart Lanczos Method for Electronic Structure Calculations , 1999 .

[31]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[32]  Yousef Saad,et al.  Parallel methods and tools for predicting material properties , 2000, Comput. Sci. Eng..

[33]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[34]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[35]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[36]  Shengbai Zhang,et al.  First-principles prediction of icosahedral quantum dots for tetravalent semiconductors , 2004 .

[37]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[38]  James R. Chelikowsky,et al.  Real-space pseudopotential method for computing the electronic properties of periodic systems , 2004 .

[39]  Constantine Bekas,et al.  Computing charge densities with partially reorthogonalized Lanczos , 2005, Comput. Phys. Commun..

[40]  Yousef Saad,et al.  Evolution of magnetism in iron from the atom to the bulk. , 2006, Physical review letters.

[41]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[42]  Yousef Saad,et al.  Self-consistent-field calculations using Chebyshev-filtered subspace iteration , 2006, J. Comput. Phys..