Gaussian quadrature rules with exponential weights on (−1, 1)

[1]  I. Notarangelo,et al.  Polynomial inequalities and embedding theorems with exponential weights on (−1,1) , 2012 .

[2]  G. Mastroianni,et al.  Polynomial approximation with an exponential weight in [−1, 1] (revisiting some of Lubinsky’s results) , 2011, Acta Scientiarum Mathematicarum.

[3]  G. Milovanović,et al.  Interpolation Processes: Basic Theory and Applications , 2008 .

[4]  G. Mastroianni,et al.  Fourier Sums and Lagrange Interpolation on (0,+‚àû) and (_‚àû,+‚àû) , 2006 .

[5]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[6]  Giuseppe Mastroianni,et al.  Gaussian rules on unbounded intervals , 2003, J. Complex..

[7]  Giovanni Monegato,et al.  Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..

[8]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[9]  Giovanni Monegato,et al.  Truncated Gauss-Laguerre quadrature rules , 2000 .

[10]  Giuseppe Mastroianni,et al.  Lagrange Interpolation in Weighted Besov Spaces , 1999 .

[11]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[12]  B. Silbermann,et al.  Numerical Analysis for Integral and Related Operator Equations , 1991 .

[13]  Giuseppe Mastroianni,et al.  A Lagrange-type projector on the real line , 2010, Math. Comput..

[14]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[15]  A. Levin,et al.  Christoffel functions and orthogonal polynomials for exponential weights on [-1,1] , 1994 .