Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy

Mineral maps based on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used to study late Miocene advanced argillic alteration at Cuprite, Nevada. Distributions of Fe-bearing minerals, clays, micas, sulfates, and carbonates were mapped using the Tetracorder spectral-shape matching system. The Al content of white micas increases toward altered areas and near intrusive rocks. Alunite composition varies from pure K to intimate mixtures of Na-K endmembers with subpixel occurrences of huangite, the Ca analogue of alunite. Intimately mixed Na-K alunite marks areas of relatively lower alteration temperature, whereas co-occurring Na-alunite and dickite may delineate relict hydrothermal conduits. The presence of dickite, halloysite, and well-ordered kaolinite, but absence of disordered kaolinite, is consistent with acidic conditions during hydrothermal alteration. Partial lichen cover on opal spectrally mimics chalcedony, limiting its detection to lichen-free areas. Pods of buddingtonite are remnants of initial quartz-adularia-smectite alteration. Thus, spectral maps provide a synoptic view of the surface mineralogy, and define a previously unrecognized early steam-heated hydrothermal event. Faulting and episodes of hydrothermal alteration at Cuprite were intimately linked to upper plate movements above the Silver Peak-Lone Mountain detachment and growth, collapse, and resurgence of the nearby Stonewall Mountain volcanic complex between 8 and 5 Ma. Isotopic dating indicates that hydrothermal activity started at least by 7.61 Ma and ended by about 6.2 Ma. Spectral and stable isotope data suggest that Cuprite is a late Miocene low-sulfidation adularia-sericite type hot spring deposit overprinted by late-stage, steam-heated advanced argillic alteration formed along the margin of the Stonewall Mountain caldera.

[1]  C. R. S. Filho,et al.  Alteration Mineralogy at the Cerro La Mina Epithermal Prospect, Patagonia, Argentina: Field Mapping, Short-Wave Infrared Spectroscopy, and ASTER Images , 2006 .

[2]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[3]  B. Meyer Medium , 2011, The Rhythm of Images.

[4]  Adel A.R. Zohdy,et al.  A new method for the automatic interpretation of Schlumberger and Wenner sounding curves , 1989 .

[5]  S. J. Sutley,et al.  Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada , 1992 .

[6]  S. Petit,et al.  Influence of Synthesis pH on Kaolinite “Crystallinity” and Surface Properties , 2000 .

[7]  J. F. Huntington,et al.  Characterising the hydrothermal alteration of the Broadlands–Ohaaki geothermal system, New Zealand, using short-wave infrared spectroscopy , 2001 .

[8]  R. Fleck,et al.  Age and character of basaltic rocks of the Yucca Mountain region , 1996 .

[9]  Alexander F. H. Goetz,et al.  Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images , 1974 .

[10]  Janice L. Bishop,et al.  The visible and infrared spectral properties of jarosite and alunite , 2005 .

[11]  Thomas Cudahy,et al.  Quantitative Mineralogy from Infrared Spectroscopic Data. II. Three-Dimensional Mineralogical Characterization of the Rocklea Channel Iron Deposit, Western Australia , 2012 .

[12]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[13]  Fred A. Kruse,et al.  Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry , 2011, International journal of remote sensing.

[14]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[15]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[16]  Claudia Biermann,et al.  Mineralogical Applications Of Crystal Field Theory , 2016 .

[17]  J. Post,et al.  The Near-Infrared Combination Band Frequencies of Dioctahedral Smectites, Micas, and Illites , 1993 .

[18]  C. Johnston,et al.  Stacking Disorder in a Sedimentary Kaolinite , 2010 .

[19]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[20]  D. Groves,et al.  Geology, alteration and ore controls of the Crofoot/Lewis Mine, Sulphur, Nevada: a well-preserved hot-spring gold-silver deposit , 1996 .

[21]  R. C. Reynolds,et al.  The effects of grinding on the structure of a low-defect kaolinite , 2002 .

[22]  P. E. Brown,et al.  Exploration for epithermal gold deposits , 2000 .

[23]  J. C. Roddick,et al.  High precision intercalibration of 40Ar-39Ar standards , 1983 .

[24]  R. Stoffregen,et al.  Experimental studies of alunite: I. 18O-16O and D-H fractionation factors between alunite and water at 250–450°C , 1994 .

[25]  A. Reyes Mineralogy,Distribution and Origin of Acid Alteration in Philippine Geothermal Systems (High-Temperature Acid Fluids And Associated Alteration And Mineralization) -- (Acid Fluids in Geothermal Systems) , 1991 .

[26]  D. C. Noble,et al.  Elemental and isotopic geochemistry of nonhydrated quartz latite glasses from the Eureka Valley Tuff, east-central California , 1976 .

[27]  P. Bethke,et al.  Ancient Lake Creede: its volcano-tectonic setting, history of sedimentation, and relation to mineralization in the Creede mining district , 2000 .

[28]  D. Foley The geology of the Stonewall Mountain Volcanic Center, Nye County, Nevada / , 1978 .

[29]  E. Duke,et al.  Near infrared spectra of white mica in the Belt Supergroup and implications for metamorphism , 2010 .

[30]  Thomas Cudahy,et al.  Tracing fluid pathways in fossil hydrothermal systems with near-infrared spectroscopy , 2005 .

[31]  G. INTRUSION-RELATED , POLYMETALLIC CARBONATE REPLACEMENT DEPOSITS IN THE EUREKA DISTRICT , EUREKA COUNTY , NEVADA , 2006 .

[32]  G. Swayze The hydrothermal and structural history of the Cuprite mining district, southwestern Nevada: An integrated geological and geophysical approach , 1997 .

[33]  A. Goetz,et al.  Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations , 2002 .

[34]  R. Donelick,et al.  Late Cenozoic extensional transfer in the Walker Lane strike-slip belt, Nevada , 1994 .

[35]  G. Rossman,et al.  Hydrogen speciation in synthetic quartz , 1984 .

[36]  E. Alexander,et al.  Calibration of the interlaboratory 40Ar39Ar dating standard, MMhb-1 , 1987 .

[37]  A. Goetz,et al.  Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada , 1994 .

[38]  G. Rossman Spectroscopy of micas , 1984 .

[39]  R. C. Peterson,et al.  Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy , 2008 .

[40]  A. Marco Saitta,et al.  First-principles modeling of the infrared spectrum of kaolinite , 2001 .

[41]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[42]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[43]  A. J. B. Anderson,et al.  Numeric examination of multivariate soil samples , 1971 .

[44]  J. Gemmell,et al.  Exploration Tools for Linked Porphyry and Epithermal Deposits: Example from the Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines , 2011 .

[45]  P. Heaney,et al.  Structure and chemistry of the low-pressure silica polymorphs , 1994 .

[46]  Charles G. Cunningham,et al.  Spectroscopic Mapping of the White Horse Alunite Deposit, Marysvale Volcanic Field, Utah: Evidence of a Magmatic Component , 2006 .

[47]  M. Lazzeri,et al.  First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite , 2005 .

[48]  Raymond F. Kokaly,et al.  Surface Reflectance Calibration of Terrestrial Imaging Spectroscopy Data : a Tutorial Using AVIRIS , 2002 .

[49]  S. J. Sutley,et al.  Using Imaging Spectroscopy To Map Acidic Mine Waste , 2000 .

[50]  Sillitoe,et al.  Linkages between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposits , 2003 .

[51]  N. White,et al.  Epithermal Gold Deposits: STYLES, CHARACTERISTICS AND EXPLORATION , 1995, SEG Discovery.

[52]  J. Boardman,et al.  Mapping hydrothermal alteration in the Comstock mining district, Nevada, using simulated satellite‐borne hyperspectral data , 1999 .

[53]  P. Bethke,et al.  The stable isotope geochemistry of acid sulfate alteration , 1992 .

[54]  S. Squyres,et al.  Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars , 2011 .

[55]  E. Duke,et al.  Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing , 1994 .

[56]  C. Weitz,et al.  Opaline silica in young deposits on Mars , 2008 .

[57]  Michael Abrams,et al.  Alteration mapping using multispectral images; Cuprite mining district, Esmeralda County, Nevada , 1980 .

[58]  M. Cruz-Cumplido,et al.  Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins , 1982 .

[59]  Adel A.R. Zohdy,et al.  Application of surface geophysics to ground-water investigations , 1980 .

[60]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[61]  G. Dipple,et al.  Equilibrium mineral–fluid calculations and their application to the solid solution between alunite and natroalunite in the El Indio–Pascua belt of Chile and Argentina , 2005 .

[62]  H. Graetsch Structural characteristics of opaline and microcrystalline silica minerals , 1994 .

[63]  C. P. Ross GEOLOGY AND ORE DEPOSITS , 2011 .

[64]  D. C. Noble,et al.  Stonewall Mountain Volcanic Center, southern Nevada: Stratigraphic, structural, and facies relations of outflow sheets, near-vent tuffs, and intracaldera units , 1989 .

[65]  L. Rowan,et al.  Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms , 2006 .

[66]  Alexander F. H. Goetz,et al.  Effects of spectrometer band pass, sampling, and signal‐to‐noise ratio on spectral identification using the Tetracorder algorithm , 2003 .

[67]  Simon J. Hook,et al.  Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .

[68]  L. Snee,et al.  Evaluation of argon ages and integrity of fluid-inclusion compositions: Stepwise noble gas heating experiments on 1.87 Ga alunite from Tapajós Province, Brazil , 2005 .

[69]  M. Aoki,et al.  Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu District, Japan , 1994 .

[70]  H. Eugster,et al.  Ammonium Silicate Stability Relations , 1976, Contributions to Mineralogy and Petrology.

[71]  B. Saksena Infra-red hydroxyl frequencies of muscovite, phlogopite and biotite micas in relation to their structures , 1964 .

[72]  F. Loughnan,et al.  Buddingtonite (NH4-feldspar) in the Condor Oilshale Deposit, Queensland, Australia , 1983, Mineralogical Magazine.

[73]  P. Renne,et al.  40Ar39Ar analysis of supergene jarosite and alunite: Implications to the paleoweathering history of the western USA and West Africa , 1994 .

[74]  W. Giggenbach Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin , 1992 .

[75]  A. Rencz,et al.  Remote sensing for the earth sciences , 1999 .

[76]  Anne B. Kahle,et al.  Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm , 1977 .

[77]  Rocnn E. SrorrnncnN,et al.  An experimental study of Na-K exchange between alunite and aqueous sulfate solutions , 1990 .

[78]  J. K. Crowley,et al.  Discovery of the Acid-Sulfate Mineral Alunite in Terra Sirenum, Mars, Using MRO CRISM: Possible Evidence for Acid-Saline Lacustrine Deposits? , 2008 .

[79]  A. F. H. Goetz,et al.  Mineralogical Mapping in the Cuprite Mining District, Nevada , 1985 .

[80]  Z. Sharp,et al.  A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals , 2001 .

[81]  Norma Vergo,et al.  Near-Infrared Reflectance Spectra of Mixtures of Kaolin-Group Minerals: Use in Clay Mineral Studies , 1988 .

[82]  P. Hauff,et al.  Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy , 1999, SEG Discovery.

[83]  Kathleen S. Smith,et al.  Detection of Jarosite and Alunite with Hyperspectral Imaging: Prospects for Determining Their Origin on Mars Using Orbital Sensors , 2006 .

[84]  G. Swayze,et al.  Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region , 2009 .

[85]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[86]  Timothy A. Warner,et al.  Integrating visible, near‐infrared and short wave infrared hyperspectral and multispectral thermal imagery for geologic mapping: simulated data , 2007 .

[87]  D. O. Hayba,et al.  Hydrologic budget of the late Oligocene Lake Creede and the evolution of the upper Rio Grande drainage system , 2000 .

[88]  A. Kerr,et al.  VISIBLE/INFRARED SPECTROSCOPY (VIRS) AS A RESEARCH TOOL IN ECONOMIC GEOLOGY: BACKGROUND AND PILOT STUDIES FROM NEWFOUNDLAND AND LABRADOR , 2011 .

[89]  C. Johnston,et al.  Low-temperature FTIR study of kaolin-group minerals , 2008 .

[90]  M. Gorova,et al.  Adularia-sericite type wallrock alteration at the María Josefa gold mine: An example of low sulfidation epithermal ore deposit, within te volcanic Rodalquilar Caldera (SE, Spain) , 1995 .

[91]  J. R. Lang,et al.  Shortwave Infrared Spectral Analysis of Hydrothermal Alteration Associated with the Pebble Porphyry Copper-Gold-Molybdenum Deposit, Iliamna, Alaska , 2013 .

[92]  T. A. Vogel,et al.  Stratigraphic relations and source areas of ash‐flow sheets of the Black Mountain and Stonewall Mountain Volcanic Centers, Nevada , 1984 .

[93]  Sgavetti,et al.  Determination of metamorphic grade in siliceous muscovite‐bearing rocks in Madagascar using reflectance spectroscopy , 2000 .

[94]  J. Robert,et al.  Intersite OH-F distribution in an Al-rich synthetic phlogopite , 1997 .

[95]  J. Huntington,et al.  Variations in composition and abundance of white mica in the hydrothermal alteration system at Helly , 2011 .

[96]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[97]  R. Ashley,et al.  Direct dating of mineralization at Goldfield, Nevada, by potassium-argon and fission-track methods , 1976 .

[98]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[99]  P. Bethke,et al.  Methods for separation and total stable isotope analysis of alunite , 1992 .

[100]  F.,et al.  Buddingtonite ( NH 4-feldspar ) in the Condor Oilshale Deposit , Queensland , Australia , 2006 .

[101]  J. Post,et al.  Physical properties of selected illites, beidellites and mixed-layer illite–beidellites from southwestern Idaho, and their infrared spectra , 2002 .

[102]  C. Alpers,et al.  Observations on the unit-cell dimensions, H 2 O contents, and delta D values of natural and synthetic alunite , 1992 .

[103]  J. Schott,et al.  An experimental study of kaolinite and dickite relative stability at 150-300 degrees C and the thermodynamic properties of dickite , 1998 .

[104]  S. Ross The Infrared Spectra of Minerals , 1974 .

[105]  G. Landis,et al.  Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio-Pascua belt, Chile , 2005 .

[106]  V. Drits,et al.  Stacking Faults in Kaolin-Group Minerals in the Light of Real Structural Features , 1989 .

[107]  Bruno Delvaux,et al.  Halloysite clay minerals – a review , 2005, Clay Minerals.

[108]  Mark G. Doyle,et al.  Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland , 2001 .

[109]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[110]  V. Farmer Infrared Absorption of Hydroxyl Groups in Kaolinite , 1964, Science.

[111]  Robert A. Gulbrandsen Buddingtonite, ammonium feldspar, in the Phosphoria Formation, southeastern Idaho , 1974 .

[112]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[113]  C. I. Sainz-Díaz,et al.  Isomorphous substitution effect on the vibration frequencies of hydroxyl groups in molecular cluster models of the clay octahedral sheet , 2000 .

[114]  B. P. Farm,et al.  Mineral Mapping Mauna Kea and Mauna Loa Shield Volcanos on Hawaii Using AVIRIS Data and the USGS Tetracorder Spectral Identification System: Lessons Applicable to the Search for Relict Martian Hydrothermal Systems , 2002 .

[115]  T. Warner,et al.  Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada: a rule-based system , 2010 .