Variation in Basal Body Localisation and Targeting of Trypanosome RP2 and FOR20 Proteins.

[1]  F. Koll,et al.  Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3 , 2017, Cilia.

[2]  J. Reiter,et al.  Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. , 2017, Cold Spring Harbor perspectives in biology.

[3]  E. Levitan,et al.  Rapid centriole assembly in Naegleria reveals conserved roles for both de novo and mentored assembly , 2016, Cytoskeleton.

[4]  K. Gull,et al.  Basal body structure and cell cycle-dependent biogenesis in Trypanosoma brucei , 2016, Cilia.

[5]  A. Tassin,et al.  Paramecium tetraurelia basal body structure , 2016, Cilia.

[6]  K. Gull,et al.  Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions , 2015, Journal of Cell Science.

[7]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[8]  L. Katz,et al.  Taxon-rich phylogenomic analyses resolve the eukaryotic tree of life and reveal the power of subsampling by sites. , 2015, Systematic biology.

[9]  M. Ginger,et al.  Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution , 2014 .

[10]  K. Gull,et al.  Identification of Paralogous Life-Cycle Stage Specific Cytoskeletal Proteins in the Parasite Trypanosoma brucei , 2014, PloS one.

[11]  Mark C. Field,et al.  A draft genome for the African crocodilian trypanosome Trypanosoma grayi , 2014, Scientific Data.

[12]  K. Gull,et al.  Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology , 2014 .

[13]  M. Mann,et al.  On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei , 2014, BMC Biology.

[14]  J. McIntosh,et al.  Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei , 2014, eLife.

[15]  M. Carrington,et al.  Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei , 2014, Current Biology.

[16]  X. Qi,et al.  The tubulin cofactor C family member TBCCD1 orchestrates cytoskeletal filament formation , 2013, Journal of Cell Science.

[17]  Erica Hawkins,et al.  An Alternative Model for the Role of RP2 Protein in Flagellum Assembly in the African Trypanosome* , 2013, The Journal of Biological Chemistry.

[18]  B. Wickstead,et al.  Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule‐based morphogenesis and mutant analysis , 2013, Molecular microbiology.

[19]  K. Gull,et al.  Evolutionary cell biology of chromosome segregation: insights from trypanosomes , 2013, Open Biology.

[20]  T. Stearns,et al.  FOP Is a Centriolar Satellite Protein Involved in Ciliogenesis , 2013, PloS one.

[21]  E. Ullu,et al.  Developmental Progression to Infectivity in Trypanosoma brucei Triggered by an RNA-Binding Protein , 2012, Science.

[22]  J. Beisson,et al.  The conserved centrosomal protein FOR20 is required for assembly of the transition zone and basal body docking at the cell surface , 2012, Journal of Cell Science.

[23]  S. Kelly,et al.  A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor , 2012, Open Biology.

[24]  D. S. Reiner,et al.  Mining the Giardia genome and proteome for conserved and unique basal body proteins. , 2011, International journal for parasitology.

[25]  J. Pereira-Leal,et al.  Tracing the origins of centrioles, cilia, and flagella , 2011, The Journal of cell biology.

[26]  Alejandro Sanchez-Flores,et al.  High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. , 2011, Genome research.

[27]  P. Bastin,et al.  1001 model organisms to study cilia and flagella , 2011, Biology of the cell.

[28]  K. Gull,et al.  The Kinetoplast Duplication Cycle in Trypanosoma brucei Is Orchestrated by Cytoskeleton-Mediated Cell Morphogenesis , 2010, Molecular and Cellular Biology.

[29]  Lillian K. Fritz-Laylin,et al.  Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation , 2010, Journal of Cell Science.

[30]  Shulamit Michaeli,et al.  The Transcriptome of the Human Pathogen Trypanosoma brucei at Single-Nucleotide Resolution , 2010, PLoS pathogens.

[31]  J. McIntosh,et al.  Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei , 2010, Journal of Cell Science.

[32]  Katia Belcram,et al.  The function of TONNEAU1 in moss reveals ancient mechanisms of division plane specification and cell elongation in land plants , 2010, Development.

[33]  L. Farinelli,et al.  Spliced Leader Trapping Reveals Widespread Alternative Splicing Patterns in the Highly Dynamic Transcriptome of Trypanosoma brucei , 2010, PLoS pathogens.

[34]  François Coulier,et al.  Control of ciliogenesis by FOR20, a novel centrosome and pericentriolar satellite protein , 2010, Journal of Cell Science.

[35]  M. E. Hodges,et al.  Reconstructing the evolutionary history of the centriole from protein components , 2010, Journal of Cell Science.

[36]  Xuning Wang,et al.  Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites , 2010, Nucleic acids research.

[37]  J. García-Verdugo,et al.  Ofd1, a human disease gene, regulates the length and distal structure of centrioles. , 2010, Developmental cell.

[38]  K. Gull,et al.  Cell morphogenesis of Trypanosoma brucei requires the paralogous, differentially expressed calpain-related proteins CAP5.5 and CAP5.5V. , 2009, Protist.

[39]  E. Koonin,et al.  Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes , 2009, Genome biology and evolution.

[40]  J. McIntosh,et al.  Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography , 2009, Journal of Cell Science.

[41]  L. Hug,et al.  Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups” , 2009, Proceedings of the National Academy of Sciences.

[42]  J. Dubremetz,et al.  The Unique Adaptation of the Life Cycle of the Coelomic Gregarine Diplauxis hatti to its Host Perinereis cultrifera (Annelida, Polychaeta): an Experimental and Ultrastructural Study , 2008, The Journal of eukaryotic microbiology.

[43]  C. Camilleri,et al.  Arabidopsis TONNEAU1 Proteins Are Essential for Preprophase Band Formation and Interact with Centrin[W] , 2008, The Plant Cell Online.

[44]  J. Löwe,et al.  High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis. , 2008, Molecular biology of the cell.

[45]  D. Birnbaum,et al.  Myeloproliferative disorder FOP-FGFR1 fusion kinase recruits phosphoinositide-3 kinase and phospholipase Cγ at the centrosome , 2008, Molecular Cancer.

[46]  K. Gull,et al.  A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. , 2008, Protist.

[47]  K. Gull,et al.  Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. , 2008, Protist.

[48]  P. Bastin,et al.  Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. , 2007, Molecular biology of the cell.

[49]  K. Gull,et al.  An Essential Quality Control Mechanism at the Eukaryotic Basal Body Prior to Intraflagellar Transport , 2007, Traffic.

[50]  J. Yates,et al.  New Tetrahymena basal body protein components identify basal body domain structure , 2007, The Journal of cell biology.

[51]  S. Kelly,et al.  Functional genomics in Trypanosoma brucei: A collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci , 2007, Molecular and biochemical parasitology.

[52]  Keith Gull,et al.  Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells , 2006, Journal of Cell Science.

[53]  K. Gull,et al.  Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation , 2006, Journal of Cell Science.

[54]  T. Holak,et al.  Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. , 2006, Journal of molecular biology.

[55]  K. Gull,et al.  Flagellar motility is required for the viability of the bloodstream trypanosome , 2006, Nature.

[56]  Daniel Nilsson,et al.  Comparative Genomics of Trypanosomatid Parasitic Protozoa , 2005, Science.

[57]  J. Yates,et al.  Proteomic Analysis of Isolated Chlamydomonas Centrioles Reveals Orthologs of Ciliary-Disease Genes , 2005, Current Biology.

[58]  K. Gull,et al.  A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. , 2003, Molecular biology of the cell.

[59]  B. Wickstead,et al.  Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. , 2002, Molecular and biochemical parasitology.

[60]  F. Bringaud,et al.  Two related subpellicular cytoskeleton-associated proteins in Trypanosoma brucei stabilize microtubules. , 2002, Molecular biology of the cell.

[61]  K. Gull,et al.  Immunological characterization of cytoskeletal proteins associated with the basal body, axoneme and flagellum attachment zone of Trypanosoma brucei , 1995, Parasitology.

[62]  K. Gull,et al.  Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes , 1989, Cell.

[63]  K. Gull,et al.  Distinct localization and cell cycle dependence of COOH terminally tyrosinolated alpha-tubulin in the microtubules of Trypanosoma brucei brucei , 1987, The Journal of cell biology.

[64]  K. Weber,et al.  Amino acid sequence requirements in the epitope recognized by the alpha‐tubulin‐specific rat monoclonal antibody YL 1/2. , 1984, The EMBO journal.

[65]  J. Kilmartin,et al.  Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line , 1982, The Journal of cell biology.

[66]  R. Brun,et al.  Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. , 1979, Acta tropica.

[67]  P. Cosette,et al.  Proteomic analysis. , 2014, Methods in molecular biology.

[68]  J. Barry,et al.  Transformation of monomorphic and pleomorphic Trypanosoma brucei. , 2004, Methods in molecular biology.