ON SIZES, KINEMATICS, M/L GRADIENTS, AND LIGHT PROFILES OF MASSIVE COMPACT GALAXIES AT z ∼ 2

We present a detailed analysis of the structure and resolved stellar populations of simulated merger remnants, and compare them to observations of compact quiescent galaxies at z ∼ 2. We find that major merging is a viable mechanism to produce systems of ∼1011 M☉ and ∼1 kpc size, provided the gas fraction at the time of final coalescence is high (∼40%) and provided that the progenitors are compact star-forming galaxies, as expected at high redshift. Their integrated spectral energy distributions and velocity dispersions are in good agreement with the observations, and their position in the (vmaj/σ, ϵ) diagram traces the upper envelope of the distribution of lower redshift early-type galaxies. The simulated merger remnants show time- and sightline-dependent M/L ratio gradients that result from a superposition of radially dependent stellar age, stellar metallicity, and extinction. The median ratio of the effective radius in rest-frame V-band light to that in mass surface density is ∼2 during the quiescent remnant phase. This is typically expressed by a negative color gradient (i.e., red core), which we expect to correlate with the integrated color of the system. Finally, the simulations differ from the observations in their surface brightness profile shape. The simulated remnants are typically best fit by high (n ≫ 4) Sérsic indices, whereas observed quiescent galaxies at z ∼ 2 tend to be less cuspy (〈n〉 ∼ 2.3). Limiting early star formation in the progenitors may be required to prevent the simulated merger remnants from having extended wings.

[1]  Harald Kuntschner,et al.  The SAURON project – XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies , 2010, 1006.1574.

[2]  Garth D. Illingworth,et al.  CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE’S WIDE FIELD CAMERA 3 , 2010, 1004.1411.

[3]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[4]  Joel R. Primack,et al.  The effect of mass ratio on the morphology and time-scales of disc galaxy mergers: Effect of mass ratio on merger morphology , 2009, 0912.1590.

[5]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[6]  P. Hopkins,et al.  Discriminating Between the Physical Processes that Drive Spheroid Size Evolution , 2009, 0909.2039.

[7]  M. Franx,et al.  THE EVOLVING RELATIONS BETWEEN SIZE, MASS, SURFACE DENSITY, AND STAR FORMATION IN 3 × 104 GALAXIES SINCE z = 2 , 2009, 0906.4786.

[8]  B. Groves,et al.  The formation of high-redshift submillimetre galaxies , 2009, 0904.0004.

[9]  P. Hopkins,et al.  How do massive black holes get their gas , 2009, 0912.3257.

[10]  J. Silk,et al.  Composite star formation histories of early-type galaxies from minor mergers: prospects for WFC3 , 2009, 0912.2629.

[11]  Joel R. Primack,et al.  The effect of gas fraction on the morphology and time-scales of disc galaxy mergers , 2009, 0912.1593.

[12]  B. Groves,et al.  A physical model for z∼ 2 dust-obscured galaxies , 2009, 0910.2234.

[13]  M. Franx,et al.  HOW MASSIVE ARE MASSIVE COMPACT GALAXIES? , 2009, 0909.5182.

[14]  J. Lucey,et al.  Stellar population gradients in early-type cluster galaxies , 2009, 0909.3844.

[15]  Kyle R. Stewart,et al.  MERGERS AND BULGE FORMATION IN ΛCDM: WHICH MERGERS MATTER? , 2009, 0906.5357.

[16]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[17]  B. Groves,et al.  High-resolution panchromatic spectral models of galaxies including photoionization and dust , 2009, 0906.2156.

[18]  P. Dokkum,et al.  A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR , 2009, 0906.2012.

[19]  P. Hopkins,et al.  COLOR DISTRIBUTIONS, NUMBER, AND MASS DENSITIES OF MASSIVE GALAXIES AT 1.5 < z < 3: COMPARING OBSERVATIONS WITH MERGER SIMULATIONS , 2009, 0905.2411.

[20]  D. Narayanan,et al.  The merger-driven evolution of warm infrared luminous galaxies , 2009, 0904.0248.

[21]  M. Lehnert,et al.  On the survival of metallicity gradients to major dry-mergers , 2009, 0903.2846.

[22]  T. Lauer,et al.  Compact high-redshift galaxies are the cores of the most massive present-day spheroids , 2009, 0903.2479.

[23]  T. Tal,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 12/14/05 THE RELATION BETWEEN COMPACT, QUIESCENT HIGH REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GR , 2022 .

[24]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[25]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[26]  I. Trujillo,et al.  MILD VELOCITY DISPERSION EVOLUTION OF SPHEROID-LIKE MASSIVE GALAXIES SINCE z ∼ 2 , 2009, 0902.4893.

[27]  P. Hopkins,et al.  RECOVERING STELLAR POPULATION PROPERTIES AND REDSHIFTS FROM BROADBAND PHOTOMETRY OF SIMULATED GALAXIES: LESSONS FOR SED MODELING , 2009, 0901.4337.

[28]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[29]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[30]  P. Hopkins,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. IV. EVOLUTION IN THE SCALING RELATIONS OF SPHEROIDS , 2008, 0807.2868.

[31]  T. Lauer,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. III. “CORE” ELLIPTICALS AND “MISSING” LIGHT , 2008, 0806.2325.

[32]  T. Lauer,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. II. “CUSP” ELLIPTICALS , 2008, 0805.3533.

[33]  Christopher Portier,et al.  Risk factors for childhood leukaemia. Discussion and summary. , 2008, Radiation protection dosimetry.

[34]  L. Danese,et al.  The Dramatic Size Evolution of Elliptical Galaxies and the Quasar Feedback , 2008, 0809.4574.

[35]  A. Hopkins,et al.  Extragalactic constraints on the initial mass function , 2008, 0809.2518.

[36]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[37]  Laboratoire AIM,et al.  Bulge Formation by the Coalescence of Giant Clumps in Primordial Disk Galaxies , 2008, 0903.1937.

[38]  H. Ford,et al.  Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0 , 2008, 0808.0077.

[39]  Mark Dickinson,et al.  Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging , 2008, 0807.4141.

[40]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[41]  P. Hopkins,et al.  Dissipation and the Fundamental Plane: Observational Tests , 2008, 0806.3974.

[42]  A. V. D. Wel,et al.  Spatially Resolved Stellar Kinematics of Field Early-Type Galaxies at z = 1: Evolution of the Rotation Rate , 2008, 0804.4228.

[43]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[44]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[45]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[46]  P. Hopkins,et al.  Dissipation and Extra Light in Galactic Nuclei. I. Gas-Rich Merger Remnants , 2008, 0802.0508.

[47]  L. Kewley,et al.  Modeling the Pan-Spectral Energy Distribution of Starburst Galaxies. IV. The Controlling Parameters of the Starburst SED , 2007, 0712.1824.

[48]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[49]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[50]  S. Ravindranath,et al.  Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.

[51]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[52]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[53]  M. Franx,et al.  Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies , 2007, 0707.4484.

[54]  A. M. Swinbank,et al.  A Detailed Study of Gas and Star Formation in a Highly Magnified Lyman Break Galaxy at z = 3.07 , 2007, 0705.1721.

[55]  E. Emsellem,et al.  The SAURON project – X. The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ɛ) diagram with integral‐field stellar kinematics , 2007, astro-ph/0703533.

[56]  P. Hopkins,et al.  Photometric Properties of the Most Massive High-Redshift Galaxies , 2007, astro-ph/0703456.

[57]  B. Lanzoni,et al.  The Importance of Dry and Wet Merging on the Formation and Evolution of Elliptical Galaxies , 2006, astro-ph/0611328.

[58]  P. P. van der Werf,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[59]  P. P. van der Werf,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006, astro-ph/0611245.

[60]  H. Rix,et al.  Spectroscopic Identification of Massive Galaxies at z ~ 2.3 with Strongly Suppressed Star Formation , 2006, astro-ph/0608446.

[61]  P. Hopkins,et al.  The Kinematic Structure of Merger Remnants , 2006, astro-ph/0607446.

[62]  J. Silk,et al.  A Simple Model for the Size Evolution of Elliptical Galaxies , 2006, astro-ph/0605436.

[63]  T. Naab,et al.  The influence of gas on the structure of merger remnants , 2006, astro-ph/0605155.

[64]  A. Cimatti,et al.  Evidence for TP-AGB Stars in High-Redshift Galaxies, and Their Effect on Deriving Stellar Population Parameters , 2006, astro-ph/0604530.

[65]  P. Jonsson sunrise: polychromatic dust radiative transfer in arbitrary geometries , 2006, astro-ph/0604118.

[66]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[67]  A. Dekel,et al.  The dissipative merger progenitors of elliptical galaxies , 2006, astro-ph/0603497.

[68]  H. Rix,et al.  The Space Density and Colors of Massive Galaxies at 2 < z < 3: The Predominance of Distant Red Galaxies , 2006, astro-ph/0601113.

[69]  J. Silk,et al.  On the origin of stars in bulges and elliptical galaxies , 2005, astro-ph/0509375.

[70]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[71]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[72]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[73]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[74]  P. Hopkins,et al.  The Fundamental Scaling Relations of Elliptical Galaxies , 2005, astro-ph/0511053.

[75]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[76]  P. P. van der Werf,et al.  IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z > 2 , 2005, astro-ph/0504219.

[77]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[78]  T. D. Matteo,et al.  A Physical Model for the Origin of Quasar Lifetimes , 2005, astro-ph/0502241.

[79]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[80]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[81]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[82]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[83]  P. Prugniel,et al.  Hyperleda. I. Identification and designation of galaxies , 2003 .

[84]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[85]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[86]  J. Brinkmann,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[87]  P. Dokkum,et al.  The Fundamental Plane at z = 1.27: First Calibration of the Mass Scale of Red Galaxies at Redshifts z > 1 , 2002, astro-ph/0210643.

[88]  R. Genzel,et al.  Molecular Gas in the Lensed Lyman Break Galaxy cB58 , 2002, astro-ph/0312099.

[89]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[90]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[91]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[92]  R. Wechsler,et al.  The Origin of Angular Momentum in Dark Matter Halos , 2001, astro-ph/0105349.

[93]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[94]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[95]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[96]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[97]  F. Bouchet,et al.  The structure and dynamical evolution of dark matter haloes , 1996, astro-ph/9603132.

[98]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[99]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[100]  L. Hernquist,et al.  Ultraluminous starbursts in major mergers , 1994, astro-ph/9405039.

[101]  J. Barnes Transformations of galaxies. I: Mergers of equal-mass stellar disks , 1992 .

[102]  L. Hernquist,et al.  Fueling Starburst Galaxies with Gas-rich Mergers , 1991 .

[103]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[104]  James Binney,et al.  On the rotation of elliptical galaxies , 1978 .