Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution

Summary Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies.

[1]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[2]  Thomas Becker,et al.  Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion , 2014, Nature.

[3]  D. Sabatini,et al.  RIBOSOME-MEMBRANE INTERACTION , 1973, The Journal of cell biology.

[4]  T. Rapoport,et al.  Mechanisms of Sec61/SecY-mediated protein translocation across membranes. , 2012, Annual review of biophysics.

[5]  L. Gold,et al.  Translation of the UGA triplet in vitro by tryptophan transfer RNA's. , 1971, Journal of molecular biology.

[6]  T. Connolly,et al.  Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes , 1989, The Journal of cell biology.

[7]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[8]  M. Pool A trans-membrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase , 2009, The Journal of cell biology.

[9]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[10]  R. Hegde,et al.  Listerin-Dependent Nascent Protein Ubiquitination Relies on Ribosome Subunit Dissociation , 2013, Molecular cell.

[11]  T. Rapoport,et al.  Structure of the SecY channel during initiation of protein translocation , 2013, Nature.

[12]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[13]  Israel S. Fernández,et al.  Molecular Architecture of a Eukaryotic Translational Initiation , 2014 .

[14]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[15]  V. Ramakrishnan,et al.  Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome , 2009, Nature Structural &Molecular Biology.

[16]  J Frank,et al.  Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. , 1997, Science.

[17]  Daniel N. Wilson,et al.  Structures of the human and Drosophila 80S ribosome , 2013, Nature.

[18]  V. Ramakrishnan,et al.  How mutations in tRNA distant from the anticodon affect the fidelity of decoding , 2010, Nature Structural &Molecular Biology.

[19]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[20]  S. Rospert,et al.  A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel , 2009, Proceedings of the National Academy of Sciences.

[21]  B. Wilkinson,et al.  Co-translational targeting and translocation of proteins to the endoplasmic reticulum. , 2013, Biochimica et biophysica acta.

[22]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[23]  Alan Brown,et al.  Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014, Science.

[24]  T. Rapoport,et al.  Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY , 2005, The Journal of cell biology.

[25]  Sjors H W Scheres,et al.  Classification of structural heterogeneity by maximum-likelihood methods. , 2010, Methods in enzymology.

[26]  R. Stroud,et al.  Targeting proteins to membranes: structure of the signal recognition particle. , 2005, Current opinion in structural biology.

[27]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[28]  R. Hegde,et al.  Sequence-Specific Alteration of the Ribosome–Membrane Junction Exposes Nascent Secretory Proteins to the Cytosol , 1996, Cell.

[29]  D. Hirsh Tryptophan transfer RNA as the UGA suppressor. , 1971, Journal of molecular biology.

[30]  V. Ramakrishnan,et al.  What recent ribosome structures have revealed about the mechanism of translation , 2009, Nature.

[31]  Joachim Frank,et al.  Visualization of Trna Movements on the Escherichia coli 70s Ribosome during the Elongation Cycle , 2000, The Journal of cell biology.

[32]  E. Fisher,et al.  Regulated Co-translational Ubiquitination of Apolipoprotein B100 , 1998, The Journal of Biological Chemistry.

[33]  S. Gygi,et al.  Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. , 2008, Structure.

[34]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[35]  Vincent B. Chen,et al.  Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding , 2011, Science.

[36]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[37]  R. Hegde,et al.  Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane , 2003, The Journal of cell biology.

[38]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[39]  T. Rapoport,et al.  Structure of a complex of the ATPase SecA and the protein-translocation channel , 2008, Nature.

[40]  V. Ramakrishnan,et al.  Molecular Architecture of a Eukaryotic Translational Initiation Complex , 2013, Science.

[41]  Y. Sugita,et al.  Conformational transition of Sec machinery inferred from bacterial SecYE structures , 2008, Nature.

[42]  Wolfgang Wintermeyer,et al.  Structure of ratcheted ribosomes with tRNAs in hybrid states , 2008, Proceedings of the National Academy of Sciences.

[43]  T. Rapoport,et al.  Preserving the membrane barrier for small molecules during bacterial protein translocation , 2011, Nature.

[44]  A. Sali,et al.  Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome , 2001, Cell.

[45]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[46]  G. Blobel,et al.  Preparation of microsomal membranes for cotranslational protein translocation. , 1983, Methods in enzymology.

[47]  Jianlin Lei,et al.  Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. , 2008, Molecular cell.

[48]  David S. Tourigny,et al.  Elongation Factor G Bound to the Ribosome in an Intermediate State of Translocation , 2013, Science.

[49]  S. Gygi,et al.  Ribosome binding of a single copy of the SecY complex: implications for protein translocation. , 2007, Molecular cell.

[50]  Y. Fujiki,et al.  Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum , 1982, The Journal of cell biology.

[51]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[52]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[53]  Jialing Lin,et al.  Both Lumenal and Cytosolic Gating of the Aqueous ER Translocon Pore Are Regulated from Inside the Ribosome during Membrane Protein Integration , 1997, Cell.

[54]  T. Rapoport,et al.  The structure of ribosome-channel complexes engaged in protein translocation. , 2000, Molecular cell.

[55]  A. Driessen,et al.  The Lateral Gate of SecYEG Opens during Protein Translocation* , 2009, The Journal of Biological Chemistry.

[56]  W. Kühlbrandt,et al.  Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector , 2014, eLife.

[57]  V. G. Panse,et al.  A new system for naming ribosomal proteins. , 2014, Current opinion in structural biology.

[58]  D. Raden,et al.  Role of the Cytoplasmic Segments of Sec61α in the Ribosome-Binding and Translocation-Promoting Activities of the Sec61 Complex , 2000, The Journal of cell biology.

[59]  Yong-Gui Gao,et al.  The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA , 2009, Science.

[60]  V. Ramakrishnan,et al.  Structural basis of the translational elongation cycle. , 2013, Annual review of biochemistry.

[61]  R. Stroud,et al.  Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes , 2010, Proceedings of the National Academy of Sciences.

[62]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[63]  R. Gilmore,et al.  A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function , 2012, The Journal of cell biology.

[64]  B. Jungnickel,et al.  A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane , 1995, Cell.

[65]  S. Joseph,et al.  Fragile X mental retardation protein regulates translation by binding directly to the ribosome. , 2014, Molecular cell.

[66]  B. Wilkinson,et al.  Signal Sequence Recognition in Posttranslational Protein Transport across the Yeast ER Membrane , 1998, Cell.

[67]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[68]  J. Taunton,et al.  An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate , 2014, eLife.

[69]  G. Palade,et al.  A SMALL PARTICULATE COMPONENT OF THE CYTOPLASM , 1955, The Journal of biophysical and biochemical cytology.

[70]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[71]  Fei Long,et al.  Low-resolution refinement tools in REFMAC5 , 2012, Acta crystallographica. Section D, Biological crystallography.

[72]  R. Gilmore,et al.  Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation , 2005, The Journal of cell biology.

[73]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[74]  K. Matlack,et al.  The 70 Carboxyl-terminal Amino Acids of Nascent Secretory Proteins Are Protected from Proteolysis by the Ribosome and the Protein Translocation Apparatus of the Endoplasmic Reticulum Membrane (*) , 1995, The Journal of Biological Chemistry.