Vapnik-Chervonenkis Density in some Theories without the Independence Property, II

We study the Vapnik-Chervonenkis (VC) density of denable families in certain stable rst-order theories. In particular we obtain uniform bounds on VC density of denable families in nite U-rank theories without the nite cover property, and we characterize those abelian groups for which there exist uniform bounds on the VC density of denable families.

[1]  K. Zh. Kudaĭbergenov Weakly quasi-o-minimal models , 2010 .

[2]  Michael C. Laskowski,et al.  Vapnik-Chervonenkis classes of definable sets , 1992 .

[3]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[4]  Jürgen Saffe Categoricity and Ranks , 1984, J. Symb. Log..

[5]  Edmund Puczyłowski,et al.  On Goldie and dual Goldie dimensions , 1984 .

[6]  Vincent Guingona On uniform definability of types over finite sets , 2012, J. Symb. Log..

[7]  Leonard Lipshitz,et al.  One-Dimensional Fibers of Rigid Subanalytic Sets , 1998, J. Symb. Log..

[8]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[9]  Alf Onshuus,et al.  Additivity of the dp-rank , 2011 .

[10]  Anand Pillay,et al.  The model-theoretic content of Lang’s conjecture , 1998 .

[11]  Pierre Simon,et al.  Externally definable sets and dependent pairs II , 2012, 1202.2650.

[12]  Vincent Guingona,et al.  Local dp-rank and VC-density over indiscernible sequences , 2011 .

[13]  Deirdre Haskell,et al.  Cell Decompositions of C-Minimal Structures , 1994, Ann. Pure Appl. Log..

[14]  Luc Bélair,et al.  Types dans les corps valués munis d'applications coefficients , 1999 .

[15]  Jirí Matousek,et al.  Bounded VC-Dimension Implies a Fractional Helly Theorem , 2004, Discret. Comput. Geom..

[16]  S. Basu,et al.  On the number of cells defined by a family of polynomials on a variety , 1996 .

[17]  Angus Macintyre,et al.  On $ω_1$-categorical theories of abelian groups , 1971 .

[18]  Zoltán Füredi,et al.  Traces of finite sets: extremal problems and geometric applications , 1994 .

[19]  Martin Ziegler,et al.  Stable Theories with A New Predicate , 2001, J. Symb. Log..

[20]  J. Spencer The Strange Logic of Random Graphs , 2001 .

[21]  B. Szegedy,et al.  Regularity Partitions and The Topology of Graphons , 2010, 1002.4377.

[22]  Deirdre Haskell,et al.  A Version of o-Minimality for the p-adics , 1997, J. Symb. Log..

[23]  G. Grätzer General Lattice Theory , 1978 .

[24]  Anand Pillay,et al.  Weakly normal groups , 1985, Logic Colloquium.

[25]  J. Spencer,et al.  Zero-one laws for sparse random graphs , 1988 .

[26]  Ehud Hrushovski,et al.  Generically stable and smooth measures in NIP theories , 2010, 1002.4763.

[27]  Alf Onshuus On dp-minimality, strong dependence and weight , 2011, J. Symb. Log..

[28]  R. Pollack,et al.  On the number of cells defined by a set of polynomials , 1993 .

[29]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[30]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[31]  Dugald Macpherson,et al.  Weakly o-minimal structures and real closed fields , 2000 .

[32]  Jean-Louis Duret,et al.  Les corps faiblement algebriquement clos non separablement clos ont la propriete d ’independance , 1980 .

[33]  M. Karpinski,et al.  Approximating Volumes and Integrals in o-Minimal and p-Minimal Theories , 1997 .

[34]  Hans Adler Theories controlled by formulas of Vapnik-Chervonenkis codimension 1 , 2008 .

[35]  Peter H. Schmitt,et al.  THE THEORY OF ORDERED ABELIAN GROUPS DOES NOT HAVE THE INDEPENDENCE PROPERTY , 1984 .

[36]  Jiří Matoušek,et al.  Geometric Set Systems , 1998 .

[37]  Mike Prest,et al.  Rings of finite representation type and modules of finite Morley rank , 1984 .

[38]  P. Erdös,et al.  A Partition Calculus in Set Theory , 1956 .

[39]  Jan Denef,et al.  P-adic and real subanalytic sets , 1988 .

[40]  Victor Harnik,et al.  Review: S. Shelah, Classification Theory and the Number of Nonisomorphic Models , 1982, Journal of Symbolic Logic.

[41]  Jan E. Holly,et al.  Canonical forms for definable subsets of algebraically closed and real closed valued fields , 1995, Journal of Symbolic Logic.

[42]  Deirdre Haskell,et al.  Vapnik-Chervonenkis Density in Some Theories without the Independence Property, II , 2011, Notre Dame J. Formal Log..

[43]  Khaled A. S. Abdel-Ghaffar Maximum number of edges joining vertices on a cube , 2003, Inf. Process. Lett..

[44]  Ehud Hrushovski,et al.  Integration in valued fields , 2006 .

[45]  Saharon Shelah,et al.  Strongly dependent theories , 2005, math/0504197.

[46]  W. Schmidt,et al.  Linear equations in variables which Lie in a multiplicative group , 2002 .

[47]  James H. Schmerl Partially Ordered Sets and the Independence Property , 1989, J. Symb. Log..

[48]  James H. Schmerl ℵ₀-categorical distributive lattices of finite breadth , 1983 .

[49]  Juan Sabia,et al.  On the Number of Sets Definable by Polynomials , 2000 .

[50]  Jirí Matousek,et al.  Discrepancy and approximations for bounded VC-dimension , 1993, Comb..

[51]  Marek Karpinski,et al.  Polynomial Bounds for VC Dimension of Sigmoidal and General Pfaffian Neural Networks , 1997, J. Comput. Syst. Sci..

[52]  Endre Szemerédi,et al.  A Combinatorial Distinction Between the Euclidean and Projective Planes , 1983, Eur. J. Comb..

[53]  Deirdre Haskell,et al.  ONE-DIMENSIONAL p -ADIC SUBANALYTIC SETS , 1999 .

[54]  Françoise Point On Decidable Extensions of Presburger Arithmetic: From A. Bertrand Numeration Systems to Pisot Numbers , 2000, J. Symb. Log..

[55]  J. Wierzejewski,et al.  On stability and products , 1976 .

[56]  Ehud Hrushovski,et al.  On NIP and invariant measures , 2007, 0710.2330.

[57]  Luc Bélair,et al.  Types dans les corps valués , 1996 .

[58]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[59]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[60]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[61]  Ya'acov Peterzil,et al.  Quasi-O-Minimal Structures , 2000, J. Symb. Log..

[62]  Micha Sharir,et al.  On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.

[63]  József Solymosi,et al.  An Incidence Theorem in Higher Dimensions , 2012, Discret. Comput. Geom..

[64]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[65]  Ya'acov Peterzil,et al.  Groups, measures, and the NIP , 2006 .

[66]  M. Prest Model theory and modules , 1988 .

[67]  Marie-Hélène Mourgues Cell decomposition for P-minimal fields , 2009, Math. Log. Q..

[68]  Andreas Baudisch Magidor-Malitz Quantifiers in Modules , 1984, J. Symb. Log..

[69]  R. Dudley,et al.  Uniform Central Limit Theorems: Notation Index , 2014 .

[70]  Pierre Simon On dp-minimal ordered structures , 2011, J. Symb. Log..

[71]  Colin Cooper,et al.  The vapnik-chervonenkis dimension of a random graph , 1995, Discret. Math..

[72]  Michael C. Laskowski,et al.  Compression Schemes, Stable Definable Families, and o-Minimal Structures , 2010, Discret. Comput. Geom..

[73]  Anand Pillay,et al.  On Lascar rank and Morley rank of definable groups in differentially closed fields , 2002, Journal of Symbolic Logic.

[74]  Angus Macintyre,et al.  On definable subsets of p-adic fields , 1976, Journal of Symbolic Logic.

[75]  Saharon Shelah,et al.  Randomness and semigenericity , 1996 .

[76]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[77]  Max A. Dickmann Elimination of Quantifiers for Ordered Valuation Rings , 1987, J. Symb. Log..

[78]  L. Lipshitz Rigid Subanalytic Sets , 1993 .

[79]  Alistair H. Lachlan,et al.  aleph0-Categorical, aleph0-stable structures , 1985, Annals of Pure and Applied Logic.

[80]  Michel Parigot Theories D'Arbres , 1982, J. Symb. Log..

[81]  E. Szemerédi,et al.  Unit distances in the Euclidean plane , 1984 .

[82]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[83]  Saharon Shelah Dependent first order theories, continued , 2004 .

[84]  Vincent Guingona,et al.  On Vapnik-Chervonenkis density over indiscernible sequences , 2014, Math. Log. Q..

[85]  Micha Sharir,et al.  Repeated Angles in the Plane and Related Problems , 1992, J. Comb. Theory, Ser. A.

[86]  Daniel Lascar Les groupes ω-stables de rang fini , 1985 .

[87]  Lou van den Dries,et al.  Closed asymptotic couples , 2000 .

[88]  Françoise Point,et al.  Essentially periodic ordered groups , 2000, Ann. Pure Appl. Log..

[89]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[90]  Ivo Herzog,et al.  Model Theory of Modules Over a Serial Ring , 1995, Ann. Pure Appl. Log..

[91]  P. Assouad Densité et dimension , 1983 .

[92]  Béla Bollobás,et al.  Unavoidable Traces Of Set Systems , 2005, Comb..

[93]  Roger Villemaire,et al.  Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems , 1996, Ann. Pure Appl. Log..

[94]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[95]  Franz-Viktor Kuhlmann Abelian Groups with Contractions II: Weak O-Minimality , 1995 .

[96]  Raf Cluckers,et al.  Analytic p-adic cell decomposition and integrals , 2002, math/0206161.

[97]  Jehuda Hartman The homeomorphic embedding of Kn in the m-cube , 1976, Discret. Math..

[98]  Dugald Macpherson,et al.  On Variants of o-Minimality , 1996, Ann. Pure Appl. Log..

[99]  Jirí Matousek,et al.  Tight upper bounds for the discrepancy of half-spaces , 1995, Discret. Comput. Geom..

[100]  Csaba D. Tóth The Szemerédi-Trotter theorem in the complex plane , 2015, Comb..

[101]  Alfred Dolich,et al.  Dp-Minimality: Basic Facts and Examples , 2011, Notre Dame J. Formal Log..

[102]  Frank O. Wagner,et al.  Coset-minimal groups , 2003, Ann. Pure Appl. Log..

[103]  S. Shelah Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory , 1971 .

[104]  A. Chernikov,et al.  Externally definable sets and dependent pairs , 2010, Israel Journal of Mathematics.

[105]  R. Dudley A course on empirical processes , 1984 .

[106]  K. Zh. Kudaîbergenov On the independence property , 2000 .